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Abstract

This thesis analyzes automated market makers (AMMs) in decentralized fi-

nance, focusing on the Uniswap protocol (V2 and V3) [1,2]. It formalizes the trad-

ing and liquidity provision mechanisms, constructs a price dynamic justified by

empirical observation, investigates expected returns for liquidity providers com-

pared with depositing assets to the bank, and presents numerical results.
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Chapter 1

Introduction

Automatedmarketmakers (AMMs) [3] are a novel tradingmechanisms implemented on blockchain

technology that has gained significant popularity recently. Unlike traditional financial market

systems that rely on limit order books (LOBs) [4] to match buying and selling orders, AMMs

facilitate trades by allowing participants to deposit assets into a pool, against which others can

trade with the pool according to specific mathematical formulas. This innovative approach

reduces computational loads, making AMMs suitable for blockchain implementation. Partic-

ipants who contribute assets to these pools are known as liquidity providers (LPs) and earn

trading fees as compensation.

This thesis focuses on Uniswap, the AMM with the highest trading volume, specifically

its V2 and V3 versions. Uniswap V2 [1] operates under the constraint that the product of the

amounts of each asset in the pool remains constant. In contrast, Uniswap V3 [2] introduces a

more generalized concept of liquidity provision, allowing LPs to select specific price ranges

within which to provide liquidity. This flexibility enhances capital efficiency by encouraging

LPs to concentrate their assets in ranges where they anticipate price fluctuations.

This thesis begins by formulating the trading mechanism and liquidity provision in Uniswap

V2 and V3, then constructing price dynamics based on arbitrage principles. We then analyze

the growth rate of an LP’s expected log reward. The LP’s reward problem in V3 is modelled as

an optimal stopping problem, where LPs decide when to withdraw their liquidity. Due to the

difficulty of obtaining explicit results, we present a simplified strategy whose value function
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can be easily computed.

This thesis contributes to the understanding of AMMs in three ways. First, it provides a

detailed theoretical formulation of the trading mechanisms in Uniswap V2 and V3. Second,

it explores the implications of liquidity provision from the perspective of LPs, focusing on

their expected returns and compute the numerical results for some simplified cases. Finally, it

discusses potential extensions to the study. This work aims to offer a deeper understanding of the

mechanisms underlying AMMs and their impact on liquidity providers’ rewards by addressing

these aspects.
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Chapter 2

Uniswap V2

This chapter focuses onUniswapV2 [1]. We introduce the fundamentalmechanisms ofUniswap

V2 and then construct a simplified model for price dynamics. Using this model, we derive the

expected growth rate of a liquidity provider’s (LP) wealth.

2.1 Uniswap V2 mechanism

Uniswap V2 is a decentralized exchange (DEX) that allows users to swap assets within a liq-

uidity pool. Each pool contains two assets: a numéraire, X (typically a stablecoin pegged to

the US dollar), and a risky asset, Y (usually a cryptocurrency). Traders can buy the risky asset

from the pool by paying with the numéraire or sell it to the pool in exchange for the numéraire.

2.1.1 Pool reserves curve and price

Let (xp, yp) represent the reserves of assets X and Y in the pool. The Uniswap V2 constraint

curve, denoted as Γ2(L), where L > 0 is the liquidity parameter, defines the relationship be-

tween these reserves:

Γ2(L) ≡ {(xp, yp) ∈ R+ × R+ | xp · yp = L2} (2.1)

This curve ensures the product of the reserves remains constant. The relationship between
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xp and yp can also be expressed explicitly as:

xp = φL(yp) ≡
L2

yp
∀yp ∈ R+ (2.2)

where φL(yp) is a convex and strictly decreasing function.

2.1.2 Trading Mechanism and Price Impact

Given the constant product of reserves, a trader who wishes to buy∆y ∈ (0, yp] of asset Y from

the pool must pay ∆x > 0 of asset X, where ∆x satisfies:

(xp +∆x) · (yp −∆y) = L2 (2.3)

Conversely, a trader selling ∆y of asset Y to the pool will receive ∆x of asset X, where ∆x

satisfies:

(xp −∆x) · (yp +∆y) = L2 (2.4)

The relative price of asset Y with respect to asset X is defined as the exchange rate when

traders buy/sell an infinitesimal amount of asset Y from/to the pool. Using the notation in (2.2),

this is:

Z ≡ −φ′
L(yp) =

xp
yp

(2.5)

Remark 2.1.1. The pool reserves pair can be determined by the current pool price Z and liq-

uidity L:

(xp, yp) = R2(L,Z) ≡
(
L
√
Z,

L√
Z

)
∈ Γ2(L) (2.6)

This implies that the pool price and liquidity parameterize the reserves curve. ■

The pool price changes as trades occur, following (2.5). Buying asset Y adds X and removes

Y from the pool, increasing the pool price. Selling Y does the opposite, decreasing the pool

price. This is due to the convexity of the function ϕL (see Figure 2.1). The difference between

the initial price and the actual trading price is called price impact or slippage. By increasing

liquidity in the pool, price impact can be mitigated. We can express the pool price as a function
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Figure 2.1: The red dot indicates the initial pool reserves pair. After trades, the reserves pair
moves to one of the black dots (depending on buying or selling). Traders expect to trade at the
current pool price Z (the slope of the green dashed line). However, the actual buying/selling
price per unit of Y (the slope of the blue lines) is higher/lower. This illustrates price slippage:
traders effectively buy/sell at a higher/lower price than expected. The new pool price Z is also
higher/lower.

of asset Y reserves and compute the absolute value of its derivative:

Z(yp) =
L2

y2p
⇒
∣∣∣∣dZ(yp)dyp

∣∣∣∣ = 2L2

y3p
= 2L−1Z(yp)

3
2 (2.7)

This shows that for a given pool price and trading volume, a pool with larger liquidity will

experience less price change after a trade.

2.1.3 Liquidity Provision and Impermanent Loss

Besides traders, liquidity providers (LPs) play a crucial role in Uniswap V2. They deposit

assets into the pool, ensuring sufficient reserves for trading. In return, LPs earn a share of the

trading fees generated by the pool.

To maintain the current pool price Z when providing liquidity, an LP deposits amounts

(xLP , yLP ) of assets X and Y, respectively, satisfying:

xp + xLP
yp + yLP

= Z (2.8)

This ensures the ratio of assets in the pool remains consistent with the current price. The de-
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posited amounts can be expressed in terms of the added liquidity L′ ≡ √
xLP · yLP and the

current price:

(xLP , yLP ) = R2(L
′, Z) (2.9)

The quantity L′ represents the liquidity contributed by the LP, as the new pool reserves can be

written as:

(xp + xLP , yp + yLP ) = R2(L+ L′, Z) (2.10)

After depositing assets, the LP’s share of the pool’s assets is their position. LPs can with-

draw any amount of liquidity in their position at any time which just reverses the process of

liquidity provision. Figure 2.2 illustrates how changes in liquidity shift the reserves curve.

Figure 2.2: The red dot shows the initial pool reserves. Changes in liquidity shift the reserves
curve (red curves). Pool reserves move to maintain the price (slope of tangent line).

A key risk for LPs is impermanent loss (IL). As the pool price Z changes, the value of the

LP’s position also changes, potentially leading to a loss compared to simply holding the assets

at the beginning. Suppose the price changes to Z ′, and the LP’s position becomes (x′LP , y′LP ) =

R2(L
′, Z ′). The difference in value compared to holding the assets can be quantified as:

(x′LP + y′LPZ
′)− (xLP + yLPZ

′)

xLP + yLPZ ′ =
2
√
α

1 + α
− 1 (2.11)

where α = Z′

Z
. This quantity is always non-positive, indicating that holding assets might be

more profitable than providing liquidity.
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2.1.4 Trading Fees

To incentivize liquidity provision and offset potential impermanent loss (IL), Uniswap V2 re-

wards liquidity providers (LPs) with a portion of the trading fees. The fee constant γ ∈ (0, 1)

determines the fraction of a trade collected as a fee.

For example, if a trader buys∆y of asset Y by paying∆x of asset X, the transactionmodifies

the reserves according to:

(xp + γ∆x) · (yp −∆y) = L2 (2.12)

This equation shows that only γ∆x of asset X is used for the actual trade, while the remaining

(1−γ)∆x is kept as a fee. An LP who has provided β percent of the liquidity to the pool will

earn β(1−γ)∆x of asset X as their share of the fee from this trade.

Similarly, for selling ∆y of asset Y, the trader receives ∆x of asset X, where:

(xp −∆x) · (yp + γ∆y) = L2 (2.13)

Here, only γ∆y of asset Y is exchanged, and the rest contributes to the fees.

If price fluctuations are not too large, the accumulated fees can compensate for IL. To il-

lustrate, consider an LP providing one unit of liquidity when the pool price is initially 1. If the

price increases to α > 1, we can express the difference between the LP’s wealth (including

earned fees) and their wealth if they had held the assets in terms of α:

2
√
α +

1− γ

γ
(
√
α− 1)− (1 + α) = −(

√
α− 1)(

√
α− 1− 1− γ

γ
) (2.14)

This expression is positive if and only if α falls within the range
(
1, 1

γ2

)
. This implies that

fees can outweigh IL for moderate price increases. Similarly, if α < 1, we can derive a region

(γ2, 1) such that the fee can compensate IL.

In Uniswap V2, the fee is fixed at 0.3%, resulting in a range of approximately (0.994,1.006)

where fees are expected to offset IL for small fluctuations.
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2.2 Price Dynamics Under Arbitrage Opportunities

In this section, we present a simplified model for pool price dynamics based on the work in [3].

We make the following key assumption:

• There exists an external market, referred to as the reference market, that also trades assets

X and Y. This market is assumed to have no trading cost and infinite liquidity, meaning

trades do not affect the market price of asset Y relative to asset X.

The model’s core concept is that significant deviations between the pool and reference market

prices create arbitrage opportunities: the riskless exploitation of price differences to make a

profit. This motivates traders to exploit these price discrepancies, driving the pool price towards

a target value where no further arbitrage is possible. This process ensures the pool price closely

tracks the reference market price, making the pool’s valuation of asset Y reliable.

In the following, we will delve into the concept of arbitrage and use it to construct the price

dynamics model.

2.2.1 Arbitrage

Traders who exploit price discrepancies for profit are called arbitrageurs. In this model, we as-

sume arbitrageurs are the only traders in the pool, and any arbitrage opportunity is immediately

and optimally exploited due to competition.

Let Z be the pool price and S the reference market price. Arbitrageurs profit by trading

between the pool and the reference market. We denote the amounts of assets X and Y traded

with the pool by (∆x,∆y) . If an arbitrageur buys ∆y of asset Y from the pool with ∆x of

asset X and sells it on the reference market for ∆y · S of asset X, his profit is:

−∆x+∆y · S =
1

∆y
(S − Zavg) (2.15)

where Zavg = ∆x
∆y

is the average trading price with the pool, which is greater than or equal to

Z due to slippage. Thus, if Z < S, there is a chance for arbitrage profit. Similarly, if Z > S,

the arbitrageur might buy asset Y from the reference market and sell them to the pool for the
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potential profit.

To maximize profit, arbitrageurs must choose optimal ∆x and ∆y subject to the reserves

curve constraint. Note that even if Z ̸= S, arbitrage may not be possible due to trading fees, as

explained below.

Since the pool price parameterizes the reserves curve, arbitrageurs effectively ”push” the

pool price towards a target value after their trades. This determines the change in pool reserves

and the corresponding trading volumes. The following proposition defines the optimal target

prices under different scenarios:

Proposition 2.2.1. The optimal pool price after arbitrage is:

Zopt =


γ−1S if Z > γ−1S

Z if Z ∈ [γS, γ−1S]

γS if Z < γS

(2.16)

We say the prices S and Z satisfy the no-arbitrage condition if Z ∈ [γS, γ−1S] (or equivalently

S ∈ [γZ, γ−1Z]).

Proof. Let L be the pool’s liquidity and (x, y) = R2(L,Z) the current pool reserves.

Case 1: Z < S (Pool price below market price) In this case, the arbitrageur buys ∆y

of asset Y from the pool with ∆x of asset X and sells the Y on the reference market. The

arbitrageur’s optimization problem is:

max
∆x,∆y≥0

−∆x+∆y · S

subject to (x+ γ∆x) · (y −∆y) = L2

We can reframe this problem in terms of the target pool price after the trade, Z ′. Since buying Y

increases the price, we have Z ′ ≥ Z. The new reserves are (xnew(Z ′), ynew(Z
′)) = R2(L,Z

′),

and the trading volumes are ∆y = y − ynew(Z
′) and ∆x = γ−1(xnew(Z

′) − x). Substituting
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these into the objective function and simplifying the problem becomes:

min
Z′≥0

g(x, y) ≡ min
Z′≥0

x+ y · γS

subject to


x = xnew(Z

′) = L
√
Z ′

y = ynew(Z
′) = L 1√

Z′

Z ′ ≥ Z

(2.17)

We can let ϕ(Z ′) = g
(
L
√
Z ′, L 1√

Z′

)
to incorporate the constraint and by chain rule we get:

d

dZ ′ϕ(Z
′) =

∂g

∂x

dx

Z ′ +
∂g

∂y

dy

Z ′

=
L

2
√
Z ′

(
1− γS

Z ′

) (2.18)

So the functionϕ is strictly decreasing on (0, γS) and strictly increasing on (γS,∞). We see that

ϕ(Z ′) is strictly decreasing on (0, γS) and strictly increasing on (γS,∞). The global minimum

on (0,∞) is at Z ′ = γS. However, due to the constraint Z ′ ≥ Z, the optimal target price is:

Zopt =


Z if Z ≥ γS

γS if Z < γS

(2.19)

Case 2: Z > S (Pool price above market price) The arbitrageur sells ∆y of asset Y bought

from the reference market to the pool in exchange for∆x of asset X. The optimization problem

is:

max
∆x,∆y≥0

∆x−∆y · S

subject to (x−∆x) · (y + γ∆y) = L2

10



its equivalent form in terms of the target price Z ′ (where now Z ′ ≤ Z) is:

min
Z′≥0

h(x, y) ≡ min
Z′≥0

x+ y · γ−1S

subject to


x = xnew(Z

′) = L
√
Z ′

y = ynew(Z
′) = L 1√

Z′

Z ′ ≤ Z

(2.20)

Let ψ(Z ′) = h
(
L
√
Z ′, L 1√

Z′

)
and compute the derivative:

d

dZ ′ψ(Z
′) =

L

2
√
Z ′

(
1− γ−1S

Z ′

)
(2.21)

Following the same logic as in Case 1, we find:

dψ(Z ′)

dZ ′ =
L

2
√
Z ′

(
1− γ−1S

Z ′

)
(2.22)

and the optimal target price is:

Zopt =


Z if Z < γ−1S

γ−1S if Z ≥ γ−1S

(2.23)

Combining both cases, we obtain the desired result.

Remark 2.2.2.

(1) The values γ−1Z in the no-arbitrage condition represent the infinitesimal buying price:

dx = γ−1(φL(y − dy)− φL(y)) = −γ−1φ′
L(y)dy +O

(
(dy)2

)
∼ γ−1Zdy (2.24)

Same for the infinitesimal selling price that equals to γZ. The optimal pool price ensures

that these trading prices match the market price.

(2) If γ = 1 (no fees), the optimal price is simply Zopt = S, and the pool price instantly
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Figure 2.3: Arbitrage and Price Adjustment in Uniswap V2. The red dots indicate reserve pairs
corresponding to different pool prices. If the pool price falls outside the no-arbitrage region
[γS, γ−1S], arbitrageurs will act to push the price back to the boundary points γS or γ−1S,
which are tangent to the reserves curve and represent the limits of profitable arbitrage.

matches the market price after any update. In this case, arbitrageurs essentially minimize

the pool’s mark-to-market wealth X + Y · S.

(3) For γ ̸= 1, arbitrageurs still minimize themark-to-market value, but with effectivemarket

prices of γ±1S due to fees. ■

2.2.2 Price Process

We now construct the pool price model based on arbitrage. We assume that the logarithm of

the market price process, {lnSn}n≥0, follows a simple random walk with forward probability

p > 0 and step size δ > 0 on some probability space (Ω,F ,P). Given this market price process,

arbitrage pushes the pool price to the target value whenever it falls outside the no-arbitrage

region ,as defined in Equation (2.16). This leads to the following definition of the pool price

process:

Definition 2.2.3. We define
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• the pool price process {Zn}n≥0 as

Zn =


Zn−1 if γSn ≤ Zn−1 ≤ γ−1Sn

γSn if Zn−1 < γSn

γ−1Sn if Zn−1 > γ−1Sn

(2.25)

with initial condition Z0 = S0. Here, 1A is the indicator function, equal to 1 if event A

occurs and 0 otherwise.

• the price deviation process {Mn}n≥0 asMn ≡ lnSn − lnZn

Since Zn ∈ [γSn, γ
−1Sn], we haveMn ∈ [ln γ, ln γ−1]. To further simplify, we fix k ∈ N

and set the random walk step size to δ = −k ln γ. This restricts the state space of Mn to

{−kδ, (−k+1)δ, . . . , (k− 1)δ, kδ}, allowing us to show that {Mn}n≥0 forms a Markov chain.

Figure 2.4: Pool vs. Market Price Trajectories. This graph shows the pool price (arbitrum
WETH/USDC 0.3% pool) and market price (Binance ETH) from September 13, 2023, 2 PM to
6 PM. The pool price is bounded by the ’CEX upper’ γ−1S and ’CEX lower’ γS lines and is
pushed towards them when touched, illustrating the arbitrage mechanism.

Proposition 2.2.4. The process {Mn}n≥0 is a Markov chain with an initial stateM0 = 0 and

the following transition probabilities:
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Form ̸= ±k

P(Mn+1 = m′δ |Mn = mδ) =


p ifm′ = m+ 1

1− p ifm′ = m− 1

(2.26)

Form = ±k

P(Mn+1 = m′δ |Mn = kδ) =


p ifm′ = k

1− p ifm′ = k − 1

(2.27)

P(Mn+1 = m′δ |Mn = −kδ) =


1− p ifm′ = −k

p ifm′ = −k + 1

(2.28)

Equivalently, this can be described by the transition matrix

−k −k + 1 −k + 2 · · · k − 2 k − 1 k



−k 1− p p 0 · · · 0 0 0

−k + 1 1− p 0 p · · · 0 0 0

−k + 2 0 1− p 0 · · · 0 0 0

...
...

...
... · · · ...

...
...

k − 2 0 0 0 · · · 0 p 0

k − 1 0 0 0 · · · 1− p 0 p

k 0 0 0 · · · 0 1− p p

(2.29)

Proof. Given n ∈ N, from (2.25) it is easy to see that the step size of Mn is at most δ. We

consider following cases:

Case 1. Mn = mδ ∈ (−kδ, kδ) (Deviation within bounds) . In this case, we have

lnSn+1 − lnZn =Mn + (lnSn+1 − lnSn) = mδ + (lnSn+1 − lnSn)

Since the randomwalk step size is δ, this implies −kδ ≤ lnSn+1− lnZn ≤ kδ. Rearranging, we
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get Zn ∈ [γSn+1, γ
−1Sn+1]. Therefore, by Equation (2.25), we have Zn+1 = Zn. This allows

us to compute:

P(Mn+1 = (m+ 1)δ,Mn = mδ) = P(lnSn+1 − lnZn+1 = (m+ 1)δ, lnSn − lnZn = mδ)

= P (lnSn+1 − lnZn = (m+ 1)δ, lnSn − lnZn = mδ)

= P(lnSn+1 − lnSn = δ,Mn = mδ)

= p · P(Mn = mδ)

where the last equality follows from the independence of random walk steps. Rearranging, we

get:

P(Mn+1 = (m+ 1)δ |Mn = mδ) = p (2.30)

Similarly, we can show that P (Mn+1 = (m− 1)δ |Mn = mδ) = 1− p.

Case 2. Mn = kδ (Upper boundary). IfMn = kδ, then lnSn+1− lnZn ≥ (k− 1)δ. From

Equation (2.25), this implies Zn+1 ≥ Zn. We claim that:

{Mn+1 = kδ,Mn = kδ} = {lnSn+1 = lnSn + δ,Mn = kδ} (2.31)

• LHS ⊆ RHS: If the price deviation does not change and lnZn+1 ≥ lnZn, the market

price must have increased, i.e., lnSn+1 = lnSn + δ.

• RHS ⊆ LHS: If lnSn+1 = lnSn+δ andMn = kδ, then lnSn+1−lnZn = (k+1)δ > kδ.

By Equation (2.25), this implies lnZn+1 = ln γSn+1 = lnSn+1 − kδ, and thusMn+1 =

kδ.

Therefore, the claim holds. Using the same reasoning as in Case 1, we find:

P(Mn+1 = kδ |Mn = kδ) = p (2.32)

And sinceMn+1 ≤ kδ, we also have:

P(Mn+1 = (k − 1)δ |Mn = kδ) = 1− P(Mn+1 = kδ |Mn = kδ) = 1− p (2.33)
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Case 3. Mn = −kδ (Lower boundary). The argument is similar to Case 2, yielding the

remaining transition probabilities.

Remark 2.2.5.

The Markov chain {Mn}n≥0 behaves like a simple random walk when it is away from the

boundaries ±kδ. However, it is ”sticky” at the boundaries, remaining there if it tries to cross

them. This can be visualized the following diagram:

−k 0 k

1− p p 1− p p 1− p p

■

Since lnZn = lnSn − lnMn, the increment of the logarithm of the pool price is also δ. We

can further characterize the pool price process as follows:

Proposition 2.2.6. For n > 0, define

Un ≡
n−1∑
i=0

1{Mn+1=kδ , Mn=kδ} Dn ≡
n−1∑
i=0

1{Mn+1=−kδ , Mn=−kδ} (2.34)

Then we have

lnZn = lnS0 + (Un −Dn)δ (2.35)

Proof. It is sufficient to show that the following two statements hold:

{lnZn+1 = lnZn + δ} = {Mn+1 = kδ,Mn = kδ} (2.36)

{lnZn+1 = lnZn − δ} = {Mn+1 = −kδ,Mn = −kδ} (2.37)

i.e. the pool price moves if and only if the price deviation process remains at the boundaries.

We will focus on proving Equation (2.36).

(⇒) AssumeMn+1 = kδ andMn = kδ. Using Equation (2.31), we get:

lnZn+1 − lnZn = lnSn+1 − lnSn − (Mn+1 −Mn) = δ
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This implies lnZn < ln γSn+1. From the definition of the pool price process, Equation (2.25),

we have lnZn+1 = lnZn + δ.

(⇐) Assume lnZn+1 = lnZn+ δ. From Equation (2.25), this can only happen if lnZn+1 =

ln γSn+1, as the other cases would contradict the fact that lnZn+1 > lnZn. This implies lnZn =

lnSn+1 − (k + 1)δ and thereforeMn+1 = kδ. Now, suppose for contradiction thatMn < kδ.

Then,

lnSn+1 − lnSn = lnSn+1 − lnZn −Mn > δ

which contradicts the assumption that the randomwalk has step size δ. Therefore, we must have

Mn = kδ. This completes the proof of Equation (2.36). The proof of Equation (2.37) follows

a similar logic.

2.3 LP reward problem

Now we are interested in the growth rate of a LP’s wealth plus the fee . A typical benchmark is

depositing the numéraire to the bank earn the compound interest. If the growth rate is too slow,

LP’s position may be outperformed by the risk free rate, whose value grows exponentially fast

due to the compound interest. So this section we focus on computing the asymptotic expected

growth rate of the logarithm of LP’s return (fee plus wealth).

Let (Xn, Yn) be the LP’s position in the pool at time n. We follow the argument in [5],

where the author assumes that LP reinvest the fee back to the pool . Other than that, he does

not withdraw or deposit liquidity after the initial deposition. The trading rule becomes the

following: 
Xγ

n+1Yn+1 = Xγ
nYn if arbitrageur buys Y from the pool

Xn+1Y
γ
n+1 = XnY

γ
n if arbitrageur sells Y to the pool

(2.38)

Then the fee are incorporated into the wealth of LP. It is shown that under the new trading rule,

the pool price model still holds. LetWn = Xn+Yn ·Sn denote the wealth of LP at time n. The

result is the following :
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Proposition 2.3.1.

lim
n→∞

E [lnWn]

n
=



δ

4k + 2

1− γ

1 + γ
if p = 1

2

(2p− 1)δ

1 + γ

1− γρ2k+1

1− ρ2k+1
if p ̸= 1

2

(2.39)

where ρ = 1−p
p
.

Before proving the proposition, we first show that {Mn}n≥0 admits a stationary distribution,

which will help us to study the limiting behavior.

Proposition 2.3.2. The stationary distribution π : {−kδ, · · · , kδ} → R+ of the price deviation

process {Mn}n≥0 is given by the followings:

(1) If p = 1
2
, then π(mδ) = 1

2k+1
for all −k ≤ m ≤ k.

(2) If p ̸= 1
2
, then π(mδ) = ρ−(m+k)δ 1−ρ

ρ−2k−ρ
for all −k ≤ m ≤ k.

Proof. Clearly, the Markov Chain is recurrent and irreducible, so the stationary distribution

uniquely exists. For p = 1
2
, the transition matrix is doubly stochastic. Hence the Markov chain

has a uniform stationary distribution π. For p ̸= 1
2
, We just need to consider the linear equation

πTM = π where π = (π(−kδ), . . . , π(kδ))T and M is the transition matrix given by (2.29).

Solving this we can get

π(nδ) = ρ−(n+k)π(kδ) ∀n ∈ {−kδ, . . . , kδ}

and normalization condition gives the result.

Now we can prove Proposition 2.3.1:
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Proof. For any n ≥ 0, the logarithm of LP’s mark-to-market wealth at time n can be written as

lnWn = ln(Xn + SnYn)

= ln(Xn + ZnYn) + ln
(
Xn + SnYn
Xn + ZnYn

)
= ln(Xn) + ln 2 + ln

(
1

2
+

Sn

2Zn

) (2.40)

Note that since |Mn| = |ln Sn

Zn
| ≤ k, the last term in the last equality is actually bounded:

ln(
1

2
+

Sn

2Zn

) ≤ ln(
1

2
∨ Sn

2Zn

) + ln 2 = 0 ∨Mn

Hence it suffices to study the growth rate of the logarithm amount of X asset in LP’s position.

Under the arbitrage assumption and , we can rewrite (2.38) as


Xγ

n+1Yn+1 = Xγ
nYn on {Mn+1 =Mn = kδ}

Xn+1Y
γ
n+1 = XnY

γ
n on {Mn+1 =Mn = −kδ}

(Xn+1, Yn+1) = (Xn, Yn) otherwise

(2.41)

Furthermore, from equations (2.36) and (2.37), we know how the pool price changes in the

above cases, and therefore how the reserves change. Substituting Yn = Xn

Zn
into the above,

simple calculation gives us

Xn+1

Xn

=


e

δ
1+γ on {Mn+1 =Mn = kδ}

e−
γδ
1+γ on {Mn+1 =Mn = −kδ}

1 otherwise

(2.42)

Now, for n ≥ 0, we can express Xn in terms of {Un}n≥0 and {Dn}n≥0:

Xn = e
δ

1+γ
Un− γδ

1+γ
DnX0 ⇒

lnXn

n
=

lnX0

n
+
Un

n

δ

1 + γ
− Dn

n

γδ

1 + γ
(2.43)

By the ergodicity of {Mn}n≥0, the limit of the above exists P a.s. (the state space is finite) and
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can be explicitly computed

lim
n→∞

Un

n
= Eπ

[
1{M1=M0=kδ}

]
= π(kδ)P(M1 = kδ |M0 = kδ)

=



1

4k + 2
if p =

1

2

pρ−2k 1− ρ

ρ−2k − ρ
if p ̸= 1

2

P - a.s

(2.44)

lim
n→∞

Dn

n
= Eπ

[
1{M1=M0=−kδ}

]
= π(−kδ)P(M1 = −kδ |M0 = −kδ)

=



1

4k + 2
if p = 1

2

(1− p)
1− ρ

ρ−2k − ρ
if p ̸= 1

2

P a.s

(2.45)

And the desired limit writes :

lim
n→∞

lnWn

n
= lim

n→∞

lnXn

n
=



1

4k + 2

δ

1 + γ
− 1

4k + 2

γδ

1 + γ
if p =

1

2

pρ−2k 1− ρ

ρ−2k − ρ

δ

1 + γ
− (1− p)

1− ρ

ρ−2k − ρ

γδ

1 + γ
if p ̸= 1

2

P - a.s

=



δ

4k + 2

1− γ

1 + γ
if p =

1

2

(2p− 1)δ

1 + γ

1− γρ2k+1

1− ρ2k+1
if p ̸= 1

2

P - a.s

(2.46)

Since |lnXn| ≤ |lnX0| + nδ, by Lebesgue dominant theorem, we also have the convergence

of the expected value.

Remark 2.3.3. The limiting growth rate is positive if p ≥ 1
2
. For p < 1

2
, we can see that the
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limiting growth rate is nonegative if and only if

1− γρ2k+1 ≥ 0 ⇒ p ≥ 1

1 + γ−
1

2k+1

Still, whether the growth rate is greater than the interest rate or not depends on the choice of

parameters. In 3.3.2 we will choose these parameters based on the empirical data and review

the results derived here. ■
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Chapter 3

Uniswap V3

In this sectionwe introduceUniswapV3, amore generalmodel of Uniswap, which offers greater

flexibility to LPs in their position. Similar to Chapter 2, We start from mechanism, construct

price dynamics and then study LP’s reward problem. Unlike in Uniswap V2, Uniswap V3

presents a more complex scenario due to its concentrated liquidity feature. So we will consider

the stopping time problem for LP’s reward.

3.1 Uniswap V3 mechanism

Uniswap V3 has more abstract pool structure compared to Uniswap V2. In this updated version,

liquidity is not a constant but a step function of the pool price called liquidity profile:

L(z) ≡
∑
i∈Z

Li1Ii(z), ∀ z > 0,

where Ii = [Pi, Pi+1), is called a tick interval and Pi is called a tick. The union of tick intervals

covers the whole the price range :

(0,∞) =
⋃
i∈Z

Ii

We assume that the liquidity is nonzero inside [Pi, Pj) for some i < j and is zero outside, which

implies that the pool reserves curve is piecewise and Locally it looks the same as a reserves

curve in Uniswap V2 but is truncated. Therefore, the model can be viewed as the patchwork of
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Uniswap V2. Figure 3.1 and Figure 3.2 show an example of Uniswap V3.

The motivation of Uniswap V3 is to increase the capital efficiency and reduce slippage. In

Uniswap V2, the liquidity is uniform on the whole price range, but in practice, only some small

parts of liquidity are used because the pool price typically fluctuates within a limited range. On

the contrary, in Uniswap V3, LPs can freely determine the tick intervals to provide liquidity

instead of the whole price range, but only when the pool price is in their price ranges can they

earn the trading fee . This encourages them to concentrate their liquidity in narrower price

ranges where they anticipate the pool price would be. By doing so, they can earn more fee but

with less initial assets to deposit. For traders, higher liquidity in the price range around the pool

price can also reduce the slippage. We will give more detail argument in the later part.

Figure 3.1: The graph gives an example of liquidity profile where the liquidity is concentrated
in the range [0.1, 2.1] and is zero outside.

3.1.1 Pool reserve curve and price

The pool reserves curve in Uniswap V3 can be considered as connecting multiple truncated

Uniswap V2 reserves curves together. So we first define these small patches on all tick intervals

and connect them together. Each tick interval Ii is just like a small pool that has its own reserves
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Figure 3.2: The pool reserves curve corresponding to Figure 3.1. Each red dot on the graph
indicates a pool reserves pair that corresponds to some tick price. Equivalently, the absolute
value of the slope of tangent line at the red dot is equal to some tick price. The curves between
the adjacent red dots are actually truncated Uniswap V2 reserves curves but with different liq-
uidity.

but with finite capacities x∗i and y∗i for asset X and Y . In Figure 3.2, these two quantities

correspond to the difference of pool reserves between two adjacent red dots.

Definition 3.1.1. In Uniswap V3, the reserves curve on a tick interval Ii = [Pi, Pi+1) with

liquidity Li ≥ 0 is defined by

Γ3(Ii, Li) ≡
{
(xi, yi) ∈ [0, x∗i ]× [0, y∗i ] |

(
xi + Li

√
Pi

)
·
(
yi +

Li√
Pi+1

)
= L2

i

}
(3.1)

where x∗i = Li

(√
Pi+1 −

√
Pi

)
and y∗i = Li

(
1√
Pi

− 1√
Pi+1

)
. We can also express the relation

between the reserves pair (xi, yi) of the tick Ii as some explicit function:

xi ≡ ϕIi,Li
(yi) =

L2
i

yi +
Li√
Pi+1

− Li

√
Pi (3.2)

for yi ∈ [0, y∗i ].

To connect the tick reserves curves together, we can parameterize them using a common
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parameter Z > 0:

(
xi(Z), yi(Z)

)
=



(0, y∗i ) if Z < Pi(
Li(

√
Z −

√
Pi), Li(

1√
Z
− 1√

Pi+1

)

)
if Z ∈ [Pi, Pi+1)

(x∗i , 0) if Z ≥ Pi+1

(3.3)

for all i ∈ Z. Then we see the relation between the parameter Z and the exchange rate of assets

on each Ii:
Zi ≡ (Z ∨ Pi) ∧ Pi+1

=
xi(Z) + Li

√
Pi

yi(Z) +
Li√
Pi+1

= −ϕ′
Li,Ii

(
yi(Z)

)
∈ [Pi, Pi+1]

(3.4)

The pool reserves pair are actually the sum of reserves on each tick interval:

(
xp(Z), yp(Z)

)
=

(∑
i∈Z

xi(Z),
∑
i∈Z

yi(Z)

)
=

(∑
i∈Z

Li(
√
Zi −

√
Pi),

∑
i∈Z

Li(
1√
Zi

− 1√
Pi+1

)

)
(3.5)

This is because whenever the parameter Z ∈ Ik , we can write:

(xp, yp) =

(∑
i<k

x∗i + xk(Z) ,
∑
i>k

y∗i + yk(Z)

)
(3.6)

which means locally the pool reserves change according to the rule we see in Uniswap V2.

And the pool price, absolute value of slope of pool reserve curve’s tangent line, is actually the

parameter Z. ■

Remark 3.1.2. We can express xi and yi in the integral forms:

xi = Li(
√
Zi −

√
Pi) =

∫ Zi

Pi

1

2
L(z)z−

1
2dz (3.7)

yi = Li(
1√
Zi

− 1√
Pi+1

) =

∫ Pi+1

Zi

1

2
L(z)z−

3
2dz (3.8)
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where Zi = (Z ∨ Pi) ∧ Pi+1. Therefore the pool reserves pair can be expressed as:

(xp, yp) =

(∑
i∈Z

xi ,
∑
i∈Z

yi

)

=

(∫ Z

0

1

2
L(z)z−

1
2dz ,

∫ ∞

Z

1

2
L(z)z−

3
2dz

) (3.9)

One can view 1
2
L(z)z−

1
2 , 1

2
L(z)z−

3
2 as the densities of assets X and Y. ■

3.1.2 Trading Mechanism

The basic idea of trading mechanism in V3 is the same as in Uniswap V2: change of the pool

reserves needs to follow the pool reserves curve. The key difference is that now the pool reserves

curve is piecewise.

Suppose that a trader wants to buy ∆y > 0 amount of asset Y with the current pool price

Z. And the current pool reserves of asset Y is yp(Z). Then buying asset Y push pool price Z

to the new pool price Z̃ that is given by:

Z̃ ≡ inf{s > Z | yp(Z)− yp(s) = ∆y ∧ yp(Z)} (3.10)

and the pool reserves pair moves to the corresponding point
(
xp(Z̃), yp(Z̃)

)
on the curve. The

amount of assetX the trader needs to pay is γ−1
(
xp(Z̃)− xp(Z)

)
, due to the existence of fee,

and receives yp(Z) − yp(Z̃) amount of asset Y . Note that if ∆y > yp(Z), he can only receive

yp(Z) amount of asset Y since this is all amount of assets Y in the pool. And the pool price

is pushed to the rightmost tick that has nonzero liquidity. In practice, this scenario is unlikely

since the pool price only fluctuates around the reference market price due to the arbitrage and

the support of the liquidity profile is usually large enough to cover this range.

Similarly, if the trader sells ∆y amount of asset Y with the current pool price Z. Selling

pushes the price to the new pool price Z̃ given by:

Z̃ ≡ sup{s < Z | xp(s)− yp(Z) = (γ∆y) ∧ (y∗ − yp(Z))} (3.11)
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where y∗ ≡ 1
2

∫∞
0
L(z)z−

3
2dz is the maximum pool capacity of asset Y .

3.1.3 Liquidity provision and Trading fee

In Uniswap V3, LPs can freely choose the tick intervals and the amounts of liquidity they want

to provide within those intervals, effectively building their own liquidity profile. And the pool

liquidity profile is just the sum of all LPs’ individual profiles.

Let LLP (·) be a LP’s liquidity profile and Z be the current pool price, the LP position can

be expressed as

(xLP (Z), yLP (Z)) =

(∫ Z

0

1

2
LLP (θ)θ

− 1
2dθ,

∫ ∞

Z

1

2
LLP (θ)θ

− 3
2dθ

)
(3.12)

An property of LP’s position is additivity, which results from the linearity of the integration.

This means the LP’s position can be viewed as the sum of position on each tick interval, or the

sum of positions on the same price range.

Z

L

Pa Pb Z

L

Pb Pc Z

L

Pa Pc

+ =

Z

L

Pa Pc Z

L

Pa Pc Z

L

Pa Pc

+ =

Uniswap V3 maintains the same principle as Uniswap V2 that trading fees are distributed

to LPs based on their contribution to the pool. But now the contribution varies with price since

it is evaluated by the portion of liquidity provide by LP.

Whenever a trade buys asset Y such that price moves from Z to Z̃, the trader pays

1− γ

γ

(
xp(Z̃)− xp(Z)

)
=

1

2

∫ Z̃∨Z

Z

1− γ

γ
L(θ)θ

− 1
2dθ

amount of assetX as fee. The corresponding amount earned by the LP, denoted by some func-
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tion fX , is given by

fX(Z, Z̃) ≡
1

2

∫ Z̃∨Z

Z

1− γ

γ

LLP (θ)

L(θ)
· L(θ)θ−

1
2dθ =

1

2

∫ Z̃∨Z

Z

1− γ

γ
LLP (θ)θ

− 1
2dθ (3.13)

Similarly, we use some function Y to denote the trading fee that is paid in asset Y to the LP

given by:

fY (Z, Z̃) ≡
1

2

∫ Z

Z̃∧Z

1− γ

γ
LLP (θ)θ

− 3
2dθ (3.14)

Note that if the LP does not provide the liquidity in the price range between Z and Z̃, then he

has no contribution to the trade and the integrals vanish, i.e he can not earn any fee.

3.1.4 Advantage of Uniswap V3

As we mentioned earlier, Uniswap V3 can increase the capital efficiency. For example, suppose

the pool price only fluctuates in some price range [Pi, Pj] and there are two LPs A and B. The

LP A deposits one unit of liquidity equally on (0,∞), so the amounts of assets he needs to

deposit is

(xA(Z), yA(Z)) =

(√
Z,

1√
Z

)
(3.15)

where Z is the initial pool price. On the other hand, the LP B decides to deposit one liquidity

unit of liquidity uniformly on [Pi, Pj] and the amounts of assets he needs to deposit is

(xB(Z), yB(Z)) =

(
1

2

∫ Z

Pi

θ−
1
2dθ,

1

2

∫ Pi+1

Z

θ−
3
2dθ

)
(3.16)

We can see that A needs to deposit more asset X and asset Y than B does, but they receive

the same amount of fee when the pool price remains in the region [Pi, Pj], which suggest that

concentrated liquidity profile is more capital efficient than uniform liquidity profile. Even if

the pool price goes outside of the region, LPs can always adjust their liquidity profile to cover

the new pool price.
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3.2 Price Dynamics Under Arbitrage Opportunities

In this section, we will construct price dynamics for Uniswap V3, under the same arbitrage’s

assumption in Section 2.2. We will show that the result is same as in Uniswap V2 because

whether the arbitrageur can earn the positive profit depends on the price, not the liquidity.

Let Z, S be the current pool and market price that are away from the leftmost and rightmost

ticks of the price range having nonzero liquidity, we have

Proposition 3.2.1. The optimal pool price for the arbitrageur is:

Zopt =


γ−1S if Z > γ−1S

Z if Z ∈ [γS, γ−1S]

γS if Z < γS

(3.17)

Proof. If S ≥ Z, the arbitrageur determines a target pool price Z̃ ∈ [Z,∞). He then buys

∆y ≡ yp(Z) − yp(Z̃) amount of asset Y from the pool and pays ∆x ≡ γ−1
(
xp(Z̃), xp(Z)

)
.

So the optimization problem for profit can be formulated as

sup
Z̃∈[Z,∞)

(
yp(Z)− yp(Z̃)

)
· S − γ−1

(
xp(Z̃), xp(Z)

)
= sup

Z̃∈[Z,∞)

1

2

∫ Z̃

Z

L(θ)[Sθ−
3
2 − γ−1θ−

1
2 ]dθ

= sup
Z̃∈[Z,∞)

1

2

∫ Z̃

Z

L(θ)θ−
1
2 [Sθ−1 − γ−1]dθ

(3.18)

Note that the integrand is positive if and only if θ < γS. If Z > γS, the integrand will never be

positive, the only choice is Zopt = Z, i.e the arbitrageur does nothing. If Z < γS, then clearly

the optimal choice is Zopt = γS.
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Similarly, if S < Z, the optimization problem for profit is:

sup
Z̃∈[0,Z]

γ−1
(
yp(Z)− yp(Z̃)

)
· S +

(
xp(Z)− xp(Z̃)

)
(3.19)

= sup
Z̃∈[0,Z]

1

2

∫ Z

Z̃

L(θ)[θ−
1
2 − Sγ−1θ−

3
2 ]dθ (3.20)

= sup
Z̃∈[0,Z]

γ

2

∫ Z

Z̃

L(θ)θ−
1
2 [γ − Sθ−1]dθ (3.21)

which suggests that if Z < γ−1S , then the optimal choice is Zopt = Z. If not, we have

Zopt = γ−1S. Combining the results we prove the statement.

Now we can consider the same construction of price dynamic as Section 2.2, where we

define {Sn}n≥0 to be a geometric random walk with step size δ = − ln γ
k
for some k ∈ N and

the price deviation processMn ≡ lnSn − lnZn.

3.3 LP return problem

In the following discussion we focus on a simplified case that a LP only provide some constant

liquidity L > 0 on some fixed price range [Pa, Pb) =
⋃b−1

i=a [Pi, Pi+1) that includes the initial

pool price Z0. Also, whenever the LP earns the trading fee, he deposits them into the bank to

accumulate interest. We want to analyze the reward of the LP compared with depositing the

initial wealth to the bank.

Based on Equation (3.12), his position can be expressed as

(xLP (Z), yLP (Z)) =

(
L(
√
Z ∧ Pb −

√
Pa), L(

1√
Z ∨ Pa

− 1√
Pb

)

)
(3.22)

From the no-arbitrage condition that Zn ≤ γ−1Sn, we can see that LP’s wealth is actually

bounded:

Wn ≡ xLP (Zn) + yLP (Zn) · Sn ≤ L(
√
Pb −

√
Pa) + γ−1Pb ·L(

1√
Pa

− 1√
Pb

) ≡ W ∗ (3.23)

Additionally, when the pool price leaves [Pa, Pb], his position will be ”locked” in the relative

30



less valuable asset. For the fee part, if p ̸= 1
2
, the SRW {lnSn}n≥0 is transient, which means

that eventually LP can not earn fee. For p = 1
2
, the SRW is null recurrent. Then let

FN ≡
N−1∑
n=0

fX(Zn, Zn+1) + Sn+1fY (Zn, Zn+1)

be the cumulative fee up to time N and

fmax ≡ max{fX(Pa, Pb), γ
−1PbfY (Pa, Pb)} (3.24)

which serves as an upper bound for the amount of fee earned for each price change. Then the

asymptotic growth rate of the cumulative fee can be estimated by

lim sup
N→∞

FN

N
≤ fmax · lim

N→∞

1

N

N−1∑
n=0

1{Zn∈[Pa,Pb]} = 0 (3.25)

since SRW is null recurrent. So the asymptotic growth rate is sublinear, which suggests that in

the long run, the reward may be outperformed by our bench mark. This motivates us to consider

the optimal stopping problem where and LP will choose an optimal timing to withdraw all his

liquidity.

Unlike the case in section 2.3, to compute the exact wealth and the fee at each moment, only

the price deviation is not enough. We also need the information of the pool price. Therefore,

we consider the process of the pairs {(Zn,Mn)}n≥0, which is a Markov chain with transition

probability:

p ((z0,m0) , (z1,m0)) =


p if m0 = kδ , z1 = z0e

δ

1− p if m0 = −kδ , z1 = z−δ
0

0 else

p ((z0,m0) , (z0,m1)) =


p if m0 ∈ (−kδ, kδ) , m1 = m0 + δ

1− p if m0 ∈ (−kδ, kδ) , m1 = m0 − δ

0 else

(3.26)
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Figure 3.3: An example of the state space of {(lnZn,Mn)}n≥0 with k = 5. The red arrow
indicates the possible movement of the process at each state. We can see that the pool price can
move to the next layer only when it is at theM = ±k.

For simplicity, we further assume that ticks are given by Pi+1 = eδPi. The state space of this

Markov chain is visualized in Figure 3.3.

3.3.1 Optimal stopping problem

First wewrite down the optimal value function, which is the optimal expected discounted reward

of LP. Given pool price Z and price deviationM , we use denote the wealth part of LP by:

W (Z,M) ≡ L(
√
Z ∨ Pb −

√
Pa) + ZeML(

1√
Z ∧ Pa

− 1√
Pb

) (3.27)

Then the value function writes:

V (Z,M) = sup
τ∈A

E(Z,M)

{
e−τrW (Zτ ,Mτ ) +

τ−1∑
k=0

e−(k+1)r
[
fX(Zk, Zk+1) + Zk+1e

Mk+1fY (Zk, Zk+1)
]}

(3.28)

where A is the collection of all admissible stopping times for the filtration {Fn}n≥0 and we

use the convention that
∑−1

k=0 is zero so that
∑τ−1

k=0 in the right hand side of the equation is
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well-defined. Note that even if τ = ∞, the terms inside the expectation at the right hand side

is well- defined due to the discount factor.

We aim to show that the value function V satisfies some recursion relation called Bellman

equation(we will not solve it in this thesis).

Denote the expected fee earned at the next time step as follows:

c(Z,M) ≡ e−rE(Z,M)

[
fX(Z0, Z1) + Z1e

M1fY (Z0, Z1)
]

Our first step is to use the function c and the lemma below to rewrite the fee part in value

function.

Lemma 3.3.1. For τ ∈ A, we have:

E(Z,M)

[
τ−1∑
k=0

e−(k+1)rfX(Zk, Zk+1) + Zk+1e
Mk+1fY (Zk, Zk+1)

]
= E(Z,M)

[
τ−1∑
k=0

e−krc(Zk,Mk)

]
(3.29)

Proof.

E(Z,M)

[
τ−1∑
k=0

e−krc(Zk,Mk)

]

=
∑
n≥1

E(Z,M)

[
τ−1∑
k=0

e−krc(Zk,Mk); τ = n

]

=
∑
n≥1

n−1∑
k=0

E(Z,M)

[
e−(k+1)rE(Zk,Mk)(fX(Z0, Z1) + Z1e

M1fY (Z0, Z1)); τ = n
]

=
∑
k≥0

∑
n>k

E(Z,M)

[
e−(k+1)rE(Z,M)(fX(Z0, Z1) + Z1e

M1fY (Z0, Z1) | Fk); τ = n
]

=
∑
k≥0

E(Z,M)

{
e−(k+1)rE(Z,M)

[
fX(Zk, Zk+1) + Zke

Mk+1fY (Zk, Zk+1)1{τ>k} | Fk

]}
=E(Z,M)

[
τ−1∑
k=0

e−(k+1)rfX(Zk, Zk+1) + Zk+1e
Mk+1fY (Zk, Zk+1)

]

(3.30)

where in the third line we change the order of sum and the fourth line use the Markov property.

Next, we want to apply a fundamental theorem for optimal stopping theory from [6], which
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states that if the reward function satisfies some conditions, we can derive the Bellman equation

for optimal stopping problem.

Theorem 3.3.2. Let {An}n≥0 be a Markov chain with state space E, Ã be the collection of

stopping time for the filtration generated by {An}n≥0 . Given ameasurable functionG : E → R

satisfying:

1. Es

[
sup0≤n≤N |G(An)|

]
<∞ ∀ N > 0

2. limn→∞G(An) exists Ps a.s. ∀ N > 0

Then the optimal value function of the optimal stopping problem: V (s) ≡ supτ∈Ã Es [G(Aτ )]

satisfies the Bellman equation:

V (s) = G(s) ∨ Es [V (A1)] (3.31)

Furthermore, let τ̃ ∗ ≡ inf{n ≥ 0 | V (An) = G(AN)}. If τ̃ ∗ < ∞ Ps − a.s. for all s ∈ E.

Then it is the optimal stopping time.

In our case, the reward function depends on time(through discounted factors) and the path(through

the fee part). To apply Theorem 3.3.3, we need to make some modification. The idea of mod-

ification also follows the discussion in [6], we creates a new process to absorb the time and

path dependent parts and the corresponding optimal value function is the same as the one in

our problem and we apply Theorem 3.3.2 to the optimal stopping problem based on this new

process.

Theorem 3.3.3. The optimal value function V satisfies the following equation:

V (Z,M) = W (Z,M) ∨ e−r
{
E(Z,M) [V (Z1,M1)]

}
+ c(Z,M) (3.32)

Also, τ ∗ ≡ inf{n ≥ 0 | V (Zn,Mn) = W (Zn,Mn)} is the optimal stopping time, i.e.

V (Z,M) = E(Z,M)

{
e−τ∗rW (Zτ∗ ,Mτ∗) +

τ∗−1∑
k=0

e−(k+1)r [fX(Zk, Zk+1) + Sk+1fY (Zk, Zk+1)]

}
(3.33)
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Proof. The whole proof is separated into four steps. In first three steps we incorporate the

discount factor and cumulative fee into the process. In the last step we apply the theorem to the

modified process and derive the result for our case.

step 1: Let An = {(Zn,Mn)}n≥0, S = R × {−k, . . . , k} be the state space, {Fn}n≥0 be the

filtration generated by {An}n≥0 and {uk}k≥1 be i.i.d. Bernoulli random variables that

are independent of {Fn}n≥0 with P(ui = 1) = 1 − e−r = P(ui = 0) = e−r. Define a

new process Ãn : Ω → S̃ ≡ S ∪ {dead} by:

Ãn =


An on

⋂n
i=1{ui = 0}

dead on
⋃n

i=1{ui = 1}

and we define Ã∞ ≡ dead. Clearly, {Ãn}n≥0 is still a Markov chain. For s0, s1 ∈ S̃, the

transition probability is given by:

p̃(s0, s1) =



1 s0, s1 = dead

0 s0 = dead ̸= s1

e−rp(s0, s1) s0, s1 ̸= dead

1− e−r s1 = dead ̸= s0

We extend the domain ofW and c to S̃ by lettingW (dead) = c(dead) = 0. Now observe

that given integrable function F : S̃ → R such that F (dead) = 0, for all s ∈ S we have

Es

[
F (Ãn)

]
=

∫
S̃

p̃(s, ds1)

∫
S̃

. . .

∫
S̃

p̃(sn−1, dsn)F (sn)

=

∫
S
e−rp(s, ds1)

∫
S

. . .

∫
S

e−rp(sn−1, dsn)F (sn)

= Es

[
e−nrF (An)

]
(3.34)

Now we claim that Es(e
−τrW (Aτ )) = Es(W (Ãτ )) for any stopping time τ ∈ A and
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s ∈ S. Given n ∈ N, we have

Es

[
e−τrW (Aτ ); τ = n

]
= P(

n⋂
i=1

{ui = 0})Es [W (An); τ = n]

= Es [W (An); τ = n, ui = 0 ∀i = 1 . . . n]

= Es

[
W (Ãn); τ = n, Ãn ̸= dead

]
= Es

[
W (Ãτ ); τ = n

]
(3.35)

where in the first equation we use independence of {ui}ni=1 and {Fn}n≥0. Similarly, we

also have

Es

[
τ−1∑
k=0

e−krc(Ak)

]
=
∑
n≥0

∑
k<n

P(
k⋂

i=1

{ui = 0})Es [c(An); τ = n]

=
∑
n≥0

∑
k<n

Es

[
c(Ak); τ = n, Ãn ̸= dead

]
= Es

[
τ−1∑
k=0

c(Ãk)

] (3.36)

Combine together and take supremum we get

V (s) = sup
τ∈A

Es

[
W (Ãτ ) +

τ−1∑
k=0

c(Ãk)

]
(3.37)

step 2: Let {F̃n}n≥0 be the filtration generated by {Ãn}n≥0 and Ã be the collection of all stop-

ping time for {F̃n}n≥0, we will show that the supremum above can be taken over all

stopping times in Ã instead of A. Define τd = inf{n ≥ 0 | Ãn = dead}, which is

a stopping time for {F̃n}n≥0. Notice that if τ ∈ A, then τ ∧ τd ∈ Ã. This is be-

cause given n ∈ N, there exists some Fn-measurable function gn : Sn → R such that

1{τ≤n} = gn(A1, . . . , An). Note that under {τd > n}, we Ai = Ãi for i ≤ n. So the

indicator function 1{τ≤n}∩{τd>n} = gn(Ã1, . . . , Ãn)1{τd>n} is F̃n- measurable. Therefore

we have

{τ ∧ τd ≤ n} = ({τ ≤ n} ∩ {τd > n}) ∪ {τd = n} ∈ F̃n
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and furthermore,

Es

[
W (Ãτ ) +

τ−1∑
k=0

c(Ãk)

]
= Es

[
W (Ãτ∧τd) +

τ∧τd−1∑
k=0

c(Ãk)

]
≤ sup

τ̃∈Ã
Es

[
W (Ãτ̃ ) +

τ̃−1∑
k=0

c(Ãk)

]

sinceW (dead) = c(dead) = 0. Conversely, for each stopping time τ̃ ∈ Ã, there exists

F̃n-measurable function gn : S̃n → R for each n ≥ 0 such that 1{τ̃=n} = gn(Ã0, . . . , Ãn).

We define

τ =


n on {gn(A0, . . . , An) = 1}

∞ on
⋂∞

n=0{gn(A0, . . . , An) = 0}

Clearly τ is a stopping time of {Fn}n≥0. Notice that τ ∧ τd = τ̃ ∧ τd since given any

ω ∈ Ω, if τ(ω) = n < τd(ω) for some n ≥ 0, then

1{τ̃=n}(ω) = gn(Ã0(ω), . . . , Ãn(ω)) = gn(A0(ω), . . . , An(ω)) = 1 (3.38)

so τ̃ ∧ τd(ω) = n. Since ω and n are arbitrary, the equality holds on {τ < τd}. Similarly,

if τ(ω) ≥ τd(ω) = n for some n ≥ 0, then

1{τ̃=k}(ω) = gk

(
Ã0(ω), . . . , Ãk(ω)

)
= gk (A0(ω), . . . , Ak(ω)) = 0 (3.39)

for k < n, which implies τ̃(ω) ≥ n. So τ̃(ω) ∧ τd(ω) = n and we can conclude that the

equality holds on Ω. So given s ∈ S , we have

Es

[
W (Ãτ̃ ) +

τ̃−1∑
k=0

c(Ãk)

]
= Es

[
W (Ãτ̃∧τd) +

τ̃∧τd−1∑
k=0

c(Ãk)

]

= Es

[
W (Ãτ∧τd) +

τ∧τd−1∑
k=0

c(Ãk)

]

≤ sup
τ ′∈A

Es

[
W (Ãτ ′) +

τ ′−1∑
k=0

c(Ãk)

]

= V (s)

(3.40)
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Therefore

V (s) = sup
τ̃∈Ã

Es

[
W (Ãτ̃ ) +

τ̃−1∑
k=0

c(Ãk)

]
(3.41)

step 3: Now we incorporate the cumulative fee part into the Markov process. Given Ĩ0 ∈ R and

Ĩn = Ĩn−1 + c(Ãn−1) for all n ∈ N, we define another new Markov chain {(Ãn, Ĩn)}n≥0

with transition probability

p̂ ((s0, I), (s1, I + c(s0))) =



1 s0 = s1 = dead

0 s0 = dead ̸= s1

e−rp(s0, s1) s0, s1 ̸= dead

1− e−r s1 = dead ̸= s0

for any s0, s1 ∈ S̃ and I ∈ R+. Define G : S̃ ×R+ → R by G(s, I) = W (s) + I and let

Ṽ (s, I) ≡ sup
τ̃∈Ã

E(s,I)

[
G(Ãτ̃ , Ĩτ̃ )

]
, so we have V (s) = Ṽ (s, 0) = Ṽ (s, I) − I for s ∈ S.

To apply the Theorem 3.3.2 on Ṽ , it is required that for any (s, I) ∈ S̃ ×R+, the function

G satisfies:

1. E(s,I)

[
sup0≤n≤N(G(Ãn, Ĩn)

]
= E(s,I)

[
sup0≤n≤N W (Ãn) + Ĩn)

]
<∞ ∀ N ≥ 0.

2. limn→∞G(Ãn, Ĩn) = limn→∞

(
W (Ãn) + Ĩn

)
exists P(s,I)-a.s.

From the beginning of this section we see that wealth (3.23) and the amount of fee earned

at each time (3.24) are bounded:

E(x,I)

[
sup

0≤n≤N

W (Ãn) + Ĩn)
]
≤ W ∗ + I +E(x,I)

[
ĨN
]
≤ W ∗ + I +Nfmax <∞ (3.42)

On the other hand, since τd < ∞ P(s,I) − a.s, the process will eventually be absorbed.

Hence

W (Ãn) + Ĩn
n→∞−−−→ W (dead) + Ĩτd = I +

τd−1∑
n=0

c(Ãn) <∞ P(x,I) − a.s. (3.43)
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The theorem gives us:

Ṽ (s, I) = G(s, I) ∨ E(s,I)

[
Ṽ (Ã1, Ĩ1)

]
(3.44)

and the optimal stopping time for the modified problem is given by

τ̃ ∗ ≡ inf{n ≥ 0 | G(Ãn, Ĩn) = Ṽ (Ãn, Ĩn)} (3.45)

Note that since the dead state is an absorbing state and G(dead, I) = I = Ṽ (dead, I),

we can conclude τ̃ ∗ ≤ τd < ∞ P(s,I)-a.s. In particular, when I = 0 and s ̸= dead, we

get

V (s) = Ṽ (s, 0)

= W (s) ∨ E(s,0)

[
Ṽ (Ã1, Ĩ1)

]
= W (s) ∨ e−r

{
E(s,0) [V (A1)]

}
+ c(s)

(3.46)

step 4: we check (3.33). First we claim that τ ∗ ∧ τd = τ̃ ∗. If ω ∈ {τ ∗ < τd}, then Ãτ∗(ω) =

Aτ∗(ω). By the definition of τ ∗, we have

G(Aτ∗ , Ĩτ∗)(ω) = W (Aτ∗)(ω) + Ĩτ∗(ω) = V (Aτ∗)(ω) + Ĩτ∗(ω) = Ṽ (Aτ∗ , Ĩτ∗)(ω)

(3.47)

in other words, τ ∗(ω) is the smallest time satisfying (3.45). So τ̃ ∗(ω) = τ ∗(ω). Con-

versely, if ω ∈ {τ ∗ ≥ τd}, we see that

W (Ak)(ω) ̸= V (Ak)(ω) ⇒ G(Ak, Ĩk)(ω) ̸= V (Ak, Ĩk)(ω) (3.48)

for k < τd(ω) and hence τ̃ ∗(ω) = τd(ω).
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Now for s ̸= dead we have

V (s) = Ṽ (s, 0)

= E(s,0)

[
G(Ãτ̃∗ , Ĩτ̃∗)

]
= E(s,0)

[
W (Ãτ̃∗) + Ĩτ̃∗

]
= E(s,0)

[
W (Ãτ∗∧τd) +

τ∗∧τd−1∑
k=0

c(Ãk)

]

= E(s,0)

[
W (Ãτ∗) +

τ∗−1∑
k=0

c(Ãk)

]

= Es

[
e−τ∗rW (Aτ∗) +

τ∗−1∑
k=0

e−krc(Ak)

]

(3.49)

So τ ∗ is the optimal stopping time and we finish the proof.

Although we have derived the Bellman equation for our problem, directly solving it is chal-

lenging due to the infinite horizon and the absence of clear boundary conditions. Therefore,

we will not pursue a direct solution to this equation. Instead, we will explore some simplified

stopping time strategy in the next part.

3.3.2 Stop at boundary

In this subsection, we consider a simplified strategy where the stopping time is set to be the time

when the pool price reach some fixed price levels Pl or Pu. In this case, the value function, i.e

expected discounted reward, is given by:

V (Z,M) = E(Z,M)

{
e−rTW (ZT ,MT ) +

T−1∑
n=0

e−r(n+1)
[
fX(Zn, Zn+1) + Zn+1e

Mn+1fY (Zn, Zn+1)
]}

(3.50)

for (Z,M) ∈ {Pl, . . . , Pu} × {−kδ, . . . , kδ} ∪ {(Pl,−kδ), (Pu, kδ)} and the stopping time

T ≡ inf{n ≥ 0 | Zn = Pl or Pu} = inf{n ≥ 0 | (Zn,Mn) = (Pl, kδ) or (Pu,−kδ)}
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Our goal is to compute the value function directly and produce some numerical results which

may indicate us the optimal choice of Pl and Pu. We first prove a lemma which is crucial for

the computation.

Lemma 3.3.4. Let τ ≡ inf{k ≥ 0 | Zn ̸= Z0}. For (Z,M) ∈ (Pl, Pu) × {−kδ, . . . , kδ}, we

have

V (Z,M) = E(Z,M)

[
e−τr;Zτ = Zeδ

] [
V (Zeδ, kδ) + fX(Z,Ze

δ)
]

+ E(Z,M)

[
e−τr;Zτ = Ze−δ

] [
V (Ze−δ,−kδ) + fX(Z,Ze

−δ)
] (3.51)

Proof. First notice that T ≥ τ P(Z,M) − a.s. because for the process to reach the boundary

points, the pool price must change. Then we can rewrite (3.50):

V (Z,M) = E(Z,M)

{
τ−1∑
n=0

e−r(n+1)
[
fX(Zn, Zn+1) + Zn+1e

Mn+1fY (Zn, Zn+1)
]}

+ E(Z,M)

{
e−TrW (ZT ,MT )

T−1∑
n=τ

e−r(n+1)
[
fX(Zn, Zn+1) + Zn+1e

Mn+1fY (Zn, Zn+1)
]}

(3.52)

For n < τ part, since the pool price does not change until time τ , the LP can not earn fee. So

the terms in the sum vanish except n = τ − 1. For τ ≤ n < T , we introduce the shift operator

on the canonical probability space as θτ : SZ+ → SZ+ . So for any ω = (s0, s1, . . .) ∈ SZ+ , we

have

θτ (ω) = (sτ(ω), sτ(ω)+1, . . .) and T ◦ θτ (ω) = T (ω)− τ(ω) (3.53)

and using the shift operator, we can rewrite the sum:

T (ω)−1∑
n=τ(ω)

e−(n+1)r
[
fX(Zn, Zn+1)(ω) + Zn+1(ω)e

Mn+1(ω)fY (Zn, Zn+1)(ω)
]

= e−τ(ω)r

T (ω)−τ(ω)−1∑
n=0

e−(n+1)r
[
fX(Zn, Zn+1)(θτ (ω)) + Zn+1(θτ (ω))e

Mn+1(θτ (ω))fY (Zn, Zn+1)(θτ (ω))
]

= e−τ(ω)r

{
T−1∑
n=0

e−(n+1)r
[
fX(Zn, Zn+1) + Zn+1e

Mn+1fY (Zn, Zn+1)
]}

◦ θτ (ω)

(3.54)
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Same for the wealth part:

e−T (ω)rW (ZT ,MT )(ω) = e−τr[e−TrW (ZT ,MT )] ◦ θτ (ω)

Combine the results together we get

V (Z,M) = E(Z,M)

{
e−τr

[
fX(Zτ−1, Zτ ) + Zτe

MτfY (Zτ−1, Zτ )
]

+ e−τr

[
e−TrW (ZT ,MT )

T−1∑
n=0

e−(n+1)r
[
fX(Zn, Zn+1) + Zn+1e

Mn+1fY (Zn, Zn+1)
]]

◦ θτ

}

= E(Z,M)

{
e−τr

[
fX(Zτ−1, Zτ ) + Zτe

MτfY (Zτ−1, Zτ ) + V (Zτ ,Mτ )
]}

= E(Z,M)

(
e−τr;Zτ = Z0e

δ
) [
V (Zeδ, kδ) + fX(Z,Ze

δ)
]

+ E(Z,M)

(
e−τr;Zτ = Z0e

−δ
) [
V (Ze−δ,−kδ) + fX(Z,Ze

−δ)
]

(3.55)

where in the second equality we use the strong Markov property and in the last equality we just

separate the case that pool price goes up or down.

Clearly, for the two boundary points (Pl,−kδ) and (Pu, kδ), the values are just the wealth

part:

V (Pu, kδ) = W (Pu, kδ) = L(
√

(Pb ∧ Pu) ∨ Pa −
√
Pa) + LPue

kδ(
1√

(Pb ∧ Pu) ∨ Pa

− 1√
Pb

)

V (Pl,−kδ) = W (Pl,−kδ) = L(
√
(Pb ∧ Pl) ∨ Pa −

√
Pa) + LPle

−kδ(
1√

(Pb ∧ Pl) ∨ Pa

− 1√
Pb

)

(3.56)

For the others, the lemma suggests that we first can solve some recursion relation for the values

at the states (Z,±kδ) for Z ∈ {Pl, . . . , Pu} and later compute the values at intermediate states.

More precisely, let B = {Pl, . . . , Pu} × {−kδ, kδ} ∪ {(Pl,−kδ), (Pu, kδ)} and N ∈ N such

that lnPu − lnPl = (N + 1)δ, we enumerate the states in B by some bijective map:

h(n) =


(Ple

nδ,−kδ) if 0 ≤ n ≤ N

(Ple
n−(N+1)δ, kδ) if N + 1 ≤ n ≤ 2N + 1

(3.57)

Then for each 0 ≤ n ≤ 2N +1, let (Z,M) ≡ h(n). Figure 3.4 shows an example of enumerat-
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Figure 3.4: Enumerated states. An example of how h enumerates the boundary states. We
can see the whichever enumerated state we start at, the first time pool price moves, we will
reach another enumerated states. This implies that the value function on these states can be
independently solve by Equation (3.51)

ing these boundary states. It suggests that we can use Equation (3.51) to solve the value function

on these boundary states independently, without involving the intermediate state m ̸= ±kδ.

With the enumeration, we define the notations below:

• W (n) corresponds toW (Z,M)

• Au(n) corresponds to E(Z,M)

[
e−rτ ;Zτ = Z0e

δ
]

• Ad(n) corresponds to E(Z,M)

[
e−rτ ;Zτ = Z0e

−δ
]

• S(n) corresponds to ZeMδ

• fX(n) corresponds to fX(Zeδ, Z)

• fY (n) corresponds to fY (Ze−δ, Z)
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Substitute into (3.51), we derive the recursion relation for the value function on B:

V (n)

=


W (n) if n = 0 or 2N + 1

Au(n) [V (n+N + 1) + fX(n)] + Ad(n) [V (n− 1) + S(n− 1)fY (n)] if 0 < n ≤ N

Ad(n) [V (n+ 1) + fX(n)] + Ad(n) [V (n−N) + S(n−N − 1)fY (n)] if N + 1 ≤ n < 2N + 1

(3.58)

We can also express recursion in linear system form. Use the notation 0 < n1 ≤ N and

N + 1 ≤ n2 < 2N + 1, we can write:



V (0)

...

V (n1)

...

V (n2)

...

V (2N + 1)



=



1 0 . . . 0 . . . 0 0

...

0 . . .

n1−1 th column︷ ︸︸ ︷
Ad(n1) . . .

n1+N+1 th column︷ ︸︸ ︷
Au(n1) . . . 0

...

0 . . . . . .

n2−N th column︷ ︸︸ ︷
Ad(n2) . . .

n2+1 th column︷ ︸︸ ︷
Au(n2) 0

...

0 0 0 0 0 0 1





V (0)

...

V (n1)

...

V (n2)

...

V (2N + 1)



+



0

...

Au(n1)fX(n1) + Ad(n1)S(n1 − 1)fY (n1)

...

Au(n2)fX(n2) + Ad(n2)S(n2 −N − 1)fY (n2)

...

0


(3.59)

To compute Au and Al, we first consider a general case. let {Bn}n≥0 be a simple random walk

with forward probability p > 0 and unit step size. We want to compute Ex(e
−T ′r ; BT ′ = k+1)

and Ex(e
−T ′r ; BT ′ = −(k + 1)) with T ′ = {n ≥ 0 | Bn = k + 1 or − (k + 1)} and

x /∈ {−(k + 1), (k + 1)}. We can choose a > 0 such that {eaBn −nr}n≥0 is a martingale with
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respect to filtration generated by {Bn}n≥0 and use the property of martingale to compute the

desired expected value. More precisely, given n > 0, we want the following equation holds:

Ex(e
aBn+1−(n+1)r | Bn) = pea(Bn+1)−(n+1)r + (1− p)ea(Bn−1)−(n+1)r = eaBn−nr (3.60)

By some computation we get two solutions:

a± = log

(
er ±

√
e2r − 4p(1− p)

2p

)

By the property of martingale, we get the linear equations for our desired expected values:

ea±x = Ex(e
a±X0)

= Ex(e
a±BT ′ −T ′r)

= Ex(e
a±BT ′ −T ′r ; BT ′ = k + 1) + Ex(e

a±BT ′ −T ′r ; BT ′ = −k − 1)

= e(k+1)a± Ex(e
−T ′r ; BT ′ = k + 1) + e−(k+1)a± Ex(e

−T ′r ; BT ′ = −k − 1)

(3.61)

Solve the equations and we derive

Ex

(
e−rT ′

; BT ′ = k + 1
)
=
ea+(x+k+1) − ea−(x+k+1)

e2a+(k+1) − e2a−(k+1)

Ex

(
e−rT ′

; BT ′ = −k − 1
)
=
ea+(x−k−1) − ea−(x−k−1)

e−2a+(k+1) − e−2a−(k+1)

(3.62)

Now go back to our case, observe that {Zτ = Z0e
±δ} = {Mn = Mn+1 = ±kδ}. And since

{Mn}n≥0 behaves almost like a simple random walk except sticking at the states±kδ the event

on the right hand side can actually be characterized by {BT ′ = ±(k + 1)}. Therefore

E(Z,M)

(
e−rτ ; Zτ = Z0e

δ
)
= E(Z,M)

(
e−rτ ; Mτ−1 =Mτ = kδ

)
=
ea+(M+k+1) − ea−(M+k+1)

e2a+(k+1) − e2a−(k+1)

E(Z,M)

(
e−rτ ; Zτ = Z0e

−δ
)
= E(Z,M)

(
e−rτ ; Mτ−1 =Mτ = −kδ

)
=
ea+(M−k−1) − ea−(M−k−1)

e−2a+(k+1) − e−2a−(k+1)

(3.63)

Notice that if p = 1
2
and r = 0, we get a = 0 degenerate root but it is not a big problem

since {Bn}n≥0 is a martingale and the desired value can be derived by solving the gambler ruin
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Figure 3.5: Normalized value functions with different interest rates. We use the parameters in
Table 3.1 and divide the value functions by the initial wealth at states.

problem:

E(Z,M)

(
e−rτ ; Zτ = Z0e

δ
)
= P(Z,M)(Mτ = k + 1) =

M + k + 1

2(k + 1)

E(Z,M)

(
e−rτ ; Zτ = Z0e

−δ
)
= P(Z,M)(Mτ = −k − 1) =

k + 1−M

2(k + 1)

(3.64)

Substitute the above results into (3.51) and solve linear system for the value function at the

states in B. The values at intermediate states can be computed again by (3.51).

In the next parts, we present some numerical results to illustrate the value function and the

optimal choice of the stopping boundaries for a simplified case. The time scale is set to 10

minutes and we choose Binance as our reference market. For the choice of parameters, the

forward probability p and step size δ is chosen according to Binance ETH price 10 minutes

data. We let p to be the empirical probability that the price goes up and let δ to be the mean of

absolute value of log price change |lnSn+1− lnSn|. The corresponding k is ⌈−1
δ
ln γ⌉. And for

simplicity, we choose the price range of the LP to be only the tick interval [Pa, Pb) = [1, eδ).

The exact values of these parameters are list in Table 3.1 and Figure 3.5 shows the an example

of value functions with different discounted rate , normalized by the initial wealth.
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k lnPa lnPb lnPl lnPu L γ δ p

2 0 1 −10 10 1 0.997 0.0015 0.5

Table 3.1: Table of Parameters

Figure 3.6: V (0, 0)/W (0, 0) with different choice of lnPl and lnPu. We can see there are
horizontal stripes with significantly deeper colors, indicating that the values are higher at some
specific choice of lower boundaries lnPl under the same choice of upper boundary lnPl.

Next, we use the discounted rate r computed from 3% annual rate:

r = (1− 0.03)
1

365·24·6 − 1 ∼ 5.6 · 10−6 (3.65)

and focus on the value at the starting point (lnZ0,M0) = (0, 0). Figure 3.6 compares the nor-

malized value functions at (0, 0)with different stopping boundaries (lnPl, lnPu). We can derive

the optimal choice of boundaries from (−100, 100). The value is greater than 1, suggesting that

the LP can have positive profit, see Table 3.2.

lnPl lnPu r value

−18 10 5.6 · 10−6 1.001574840177328

Table 3.2: Table of discounted rate, optimal choice of stopping boundaries

We can also use the parameters in tables to compute the exact value of the asymptotic log-
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arithm growth rate (2.39):

lim
n→∞

lnWn

n
=

δ

4k + 2

1− γ

1 + γ
∼ 2.25 · 10−7 < r = 5.6 · 10−6

which means that in Uniswap V2, LP’s reward is outperformed by bank deposit. While in

Uniswap V3 we see that suitable choice upper and lower price levels help LP’s reward to sur-

passes the bank deposit. So we can conclude that the generalization from V2 to V3 can indeed

increase the profit of LPs by providing them more flexible choices to design their strategies.

3.3.3 Discussion

In this work, we only consider the stopping time as a control and compute the value function for

stopping-at-boundary strategy. Thoughwe did not solve the optimal stopping problem in section

3.3.1, the additivity property in UniswapV3 simplifies consideration of amore general problem.

Suppose now LP withdraws liquidity on each tick interval independently, which means that

each tick interval is associated with an optimal stopping time. Since the decomposition of

LP’s position into smaller positions on tick intervals can also applies to wealth ,fee part and

therefore the value function, we can focus on the optimal stopping problem for a position with

unit liquidity on each tick interval only. Sum of the optimal value functions of these smaller

positions gives the original optimal value function.

The results of the problem should provide some insight for more general control problem

such as allowing LP to dynamically adjusting their liquidity profiles, since reducing the liquidity

on a tick interval is actually equivalent to withdraw the position on that tick interval with the

same amount of liquidity. Also advanced techniques like dynamic programming/ reinforcement

learning can be employed to solve the problem more effectively.
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