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Abstract

This thesis analyzes automated market makers (AMMSs) in decentralized fi-
nance, focusing on the Uniswap protocol (V2 and V3) [1,2]. It formalizes the trad-
ing and liquidity provision mechanisms, constructs a price dynamic justified by
empirical observation, investigates expected returns for liquidity providers com-

pared with depositing assets to the bank, and presents numerical results.
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Chapter 1

Introduction

Automated market makers (AMMs) [3] are a novel trading mechanisms implemented on blockchain
technology that has gained significant popularity recently. Unlike traditional financial market
systems that rely on limit order books (LOBs) [4] to match buying and selling orders, AMMs
facilitate trades by allowing participants to deposit assets into a pool, against which others can
trade with the pool according to specific:mathematical formulas. This innovative approach
reduces computational loads, making AMMs suitable for blockchain implementation. Partic-
ipants who contribute assets to these pools are known as liquidity providers (LPs) and earn
trading fees as compensation.

This thesis focuses on Uniswap, the AMM with the highest trading volume, specifically
its V2 and V3 versions. Uniswap V2 [1] operates under the constraint that the product of the
amounts of each asset in the pool remains constant. In contrast, Uniswap V3 [2] introduces a
more generalized concept of liquidity provision, allowing LPs to select specific price ranges
within which to provide liquidity. This flexibility enhances capital efficiency by encouraging
LPs to concentrate their assets in ranges where they anticipate price fluctuations.

This thesis begins by formulating the trading mechanism and liquidity provision in Uniswap
V2 and V3, then constructing price dynamics based on arbitrage principles. We then analyze
the growth rate of an LP’s expected log reward. The LP’s reward problem in V3 is modelled as
an optimal stopping problem, where LPs decide when to withdraw their liquidity. Due to the

difficulty of obtaining explicit results, we present a simplified strategy whose value function



can be easily computed.

This thesis contributes to the understanding of AMMs in three ways. First, it provides a
detailed theoretical formulation of the trading mechanisms in Uniswap V2 and V3. Second,
it explores the implications of liquidity provision from the perspective of LPs, focusing on
their expected returns and compute the numerical results for some simplified cases. Finally, it
discusses potential extensions to the study. This work aims to offer a deeper understanding of the
mechanisms underlying AMMs and their impact on liquidity providers’ rewards by addressing

these aspects.



Chapter 2

Uniswap V2

This chapter focuses on Uniswap V2 [1]. We introduce the fundamental mechanisms of Uniswap
V2 and then construct a simplified model for price dynamics. Using this model, we derive the

expected growth rate of a liquidity provider’s (LP) wealth.

2.1 Uniswap V2 mechanism

Uniswap V2 is a decentralized exchange (DEX) that allows users to swap assets within a lig-
uidity pool. Each pool contains two assets: a numéraire, X (typically a stablecoin pegged to
the US dollar), and a risky asset, Y (usually a cryptocurrency). Traders can buy the risky asset

from the pool by paying with the numéraire or sell it to the pool in exchange for the numéraire.

2.1.1 Pool reserves curve and price

Let (x,,y,) represent the reserves of assets X and Y in the pool. The Uniswap V2 constraint
curve, denoted as ['5(L), where L > 0 is the liquidity parameter, defines the relationship be-

tween these reserves:
Iy(L) = {(zp,yp) € RT xRY | 2, -y, = L?} (2.1)

This curve ensures the product of the reserves remains constant. The relationship between



x, and y, can also be expressed explicitly as:

L2
Ty = @L(yp) = y_ \V/yp € R+ (22)

P

where ¢,(y,) is a convex and strictly decreasing function.

2.1.2 Trading Mechanism and Price Impact

Given the constant product of reserves, a trader who wishes to buy Ay € (0, y,] of asset Y from

the pool must pay Az > 0 of asset X, where Ax satisfies:
(z, + Ax) - (y, — Ay) = L (2.3)

Conversely, a trader selling Ay of asset Y to the pool will receive Az of asset X, where Ax
satisfies:

(z, =Dx) (yp + Ny)= L? (2.4)

The relative price of asset Y with respect to asset X is defined as the exchange rate when
traders buy/sell an infinitesimal amount of asset Y from/to the pool. Using the notation in (2.2),
this is:

x

ZE—%@sz (2.5)

Remark 2.1.1. The pool reserves pair can be determined by the current pool price Z and lig-
uidity L:

(5) = 1a(2,2) = (V.2 ) € Tall) 2.6)

L
NG
This implies that the pool price and liquidity parameterize the reserves curve. ll

The pool price changes as trades occur, following (2.5). Buying asset Y adds X and removes
Y from the pool, increasing the pool price. Selling Y does the opposite, decreasing the pool
price. This is due to the convexity of the function ¢, (see Figure 2.1). The difference between

the initial price and the actual trading price is called price impact or slippage. By increasing

liquidity in the pool, price impact can be mitigated. We can express the pool price as a function
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Figure 2.1: The red dot indicates the initial pool reserves pair. After trades, the reserves pair
moves to one of the black dots (depending on buying or selling). Traders expect to trade at the
current pool price Z (the slope of the green dashed line). However, the actual buying/selling
price per unit of Y (the slope of the blue lines) is higher/lower. This illustrates price slippage:
traders effectively buy/sell at a higher/lower price than expected. The new pool price Z is also
higher/lower.

of asset Y reserves and compute the absolute value of its derivative:

L? dZ(y,) |- —2L? 3
Z(yy) = = = ‘ Rl T oL 7 (y,)? 2.7)
P dy, Y3 P

This shows that for a given pool price and trading volume, a pool with larger liquidity will

experience less price change after a trade.

2.1.3 Liquidity Provision and Impermanent Loss

Besides traders, liquidity providers (LPs) play a crucial role in Uniswap V2. They deposit
assets into the pool, ensuring sufficient reserves for trading. In return, LPs earn a share of the
trading fees generated by the pool.

To maintain the current pool price Z when providing liquidity, an LP deposits amounts

(xLp,yrp) of assets X and Y, respectively, satisfying:

Ty +2TLp

=7 2.8
yp + yrLp ( )

This ensures the ratio of assets in the pool remains consistent with the current price. The de-
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posited amounts can be expressed in terms of the added liquidity L' = \/x.p - yrp and the

current price:

(zp,yLp) = Ra(L, Z) (2.9)

The quantity L’ represents the liquidity contributed by the LP, as the new pool reserves can be

written as:

(z,+xLp,yp +yrp) = Ro(L+ L', Z) (2.10)

After depositing assets, the LP’s share of the pool’s assets is their position. LPs can with-
draw any amount of liquidity in their position at any time which just reverses the process of
liquidity provision. Figure 2.2 illustrates how changes in liquidity shift the reserves curve.
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Figure 2.2: The red dot shows the initial pool reserves. Changes in liquidity shift the reserves
curve (red curves). Pool reserves move to maintain the price (slope of tangent line).

A key risk for LPs is impermanent loss (IL). As the pool price Z changes, the value of the
LP’s position also changes, potentially leading to a loss compared to simply holding the assets
at the beginning. Suppose the price changes to Z’, and the LP’s position becomes (2 p, ¥} p) =

Ry (L', Z"). The difference in value compared to holding the assets can be quantified as:

SL‘LP—FprZ, N 14+«

(‘r/LP + y/LPZ/) — (ILP + yLPZ,) 2\/5 -1 (211)

where a = % This quantity is always non-positive, indicating that holding assets might be

more profitable than providing liquidity.



2.1.4 Trading Fees

To incentivize liquidity provision and offset potential impermanent loss (IL), Uniswap V2 re-
wards liquidity providers (LPs) with a portion of the trading fees. The fee constant y € (0, 1)
determines the fraction of a trade collected as a fee.

For example, if a trader buys Ay of asset Y by paying Ax of asset X, the transaction modifies
the reserves according to:

(zp + 7Az) - (y, — Ay) = L? (2.12)

This equation shows that only yAx of asset X is used for the actual trade, while the remaining
(1—y)Ax is kept as a fee. An LP who has provided 3 percent of the liquidity to the pool will
earn $(1—y)Ax of asset X as their share of the fee from this trade.

Similarly, for selling Ay of asset Y, the trader receives Az of asset X, where:
(z, — A7) Ny, FyAY) = L (2.13)

Here, only yAy of asset Y is exchanged, and the rest contributes to the fees.

If price fluctuations are not too large, the accumulated fees can compensate for IL. To il-
lustrate, consider an LP providing one unit of liquidity when the pool price is initially 1. If the
price increases to a > 1, we can express the difference between the LP’s wealth (including

earned fees) and their wealth if they had held the assets in terms of a:

2o+ (Wa- )= (1+a) = —(Va-Da-1-) @

This expression is positive if and only if « falls within the range ( 1, %2) This implies that
fees can outweigh IL for moderate price increases. Similarly, if & < 1, we can derive a region
(72, 1) such that the fee can compensate IL.

In Uniswap V2, the fee is fixed at 0.3%, resulting in a range of approximately (0.994,1.006)

where fees are expected to offset IL for small fluctuations.



2.2 Price Dynamics Under Arbitrage Opportunities

In this section, we present a simplified model for pool price dynamics based on the work in [3].

We make the following key assumption:

» There exists an external market, referred to as the reference market, that also trades assets
X and Y. This market is assumed to have no trading cost and infinite liquidity, meaning

trades do not affect the market price of asset Y relative to asset X.

The model’s core concept is that significant deviations between the pool and reference market
prices create arbitrage opportunities: the riskless exploitation of price differences to make a
profit. This motivates traders to exploit these price discrepancies, driving the pool price towards
a target value where no further arbitrage is possible. This process ensures the pool price closely
tracks the reference market price, making the pool’s valuation of asset Y reliable.

In the following, we will delve into the concept of arbitrage and use it to construct the price

dynamics model.

2.2.1 Arbitrage

Traders who exploit price discrepancies for profit are called arbitrageurs. In this model, we as-
sume arbitrageurs are the only traders in the pool, and any arbitrage opportunity is immediately
and optimally exploited due to competition.

Let Z be the pool price and S the reference market price. Arbitrageurs profit by trading
between the pool and the reference market. We denote the amounts of assets X and Y traded
with the pool by (Az, Ay) . If an arbitrageur buys Ay of asset Y from the pool with Ax of
asset X and sells it on the reference market for Ay - S of asset X, his profit is:

1

—A Ay-S =
T+ Ay Ay

(S — Zave) (2.15)

Az

where Z,,, = Ay

is the average trading price with the pool, which is greater than or equal to
Z due to slippage. Thus, if Z < S, there is a chance for arbitrage profit. Similarly, if Z > S,

the arbitrageur might buy asset Y from the reference market and sell them to the pool for the



potential profit.

To maximize profit, arbitrageurs must choose optimal Az and Ay subject to the reserves
curve constraint. Note that even if Z £ S, arbitrage may not be possible due to trading fees, as
explained below.

Since the pool price parameterizes the reserves curve, arbitrageurs effectively “push” the
pool price towards a target value after their trades. This determines the change in pool reserves
and the corresponding trading volumes. The following proposition defines the optimal target

prices under different scenarios:

Proposition 2.2.1. The optimal pool price after arbitrage is:

/

IS ifZ >~7LS

Zopt =\ Z ifZe[yS,y 19 (2.16)

xS ifZ <8

X

We say the prices S and Z satisfy the no-arbitrage condition if Z € [S,~~'5] (or equivalently
SelzyZ).

Proof. Let L be the pool’s liquidity and (z,y) = R (L, Z) the current pool reserves.

Case 1: Z < S (Pool price below market price) In this case, the arbitrageur buys Ay
of asset Y from the pool with Az of asset X and sells the Y on the reference market. The
arbitrageur’s optimization problem is:

AglAayxZO —Ax+Ay- S

subject to (x + yAx) - (y — Ay) = L?

We can reframe this problem in terms of the target pool price after the trade, Z’. Since buying Y
increases the price, we have Z' > Z. The new reserves are (Tpew(Z'), Ynew(Z')) = Ro(L, Z'),

and the trading volumes are Ay = y — ynew(Z’) and Az = v 1 (2pew(Z’) — ). Substituting



these into the objective function and simplifying the problem becomes:

min g(z,y) = minz +y - 5
(

T = Tpew(Z') = LNV Z'
(2.17)

subjectto {4 = Ynew(Z') = L\/%

Z'>7

\

We canlet p(Z') = g <L\/ A4S Lﬁ) to incorporate the constraint and by chain rule we get:

d , dgdx  Ogdy
/A P Rl Wt i
dZ/¢( ) or Z' 0y Z'

_ L (1_ﬁ>
VA A

So the function ¢ is strictly decreasing on (0, 7.5) and strictly increasing on (7S, 0o). We see that

(2.18)

¢(Z") is strictly decreasing on (0, .S) and strictly increasing on (7.5, oo). The global minimum

on (0,00) is at Z' = .S. However, due to the constraint-Z’ > 7, the optimal target price is:

Z itz > S
Zopt T (219)

NS At Z < S

Case 2: Z > S (Pool price above market price) The arbitrageur sells Ay of asset Y bought
from the reference market to the pool in exchange for Az of asset X. The optimization problem
is:
max Ax —Ay-S
Az, Ay>0

subject to (z — Az) - (y + vAy) = L?

10



its equivalent form in terms of the target price Z’ (where now 7' < 7) is:

. — . A _1
min h(z,y) = minz+y-y S
(
T = Tpew(Z') = LNV Z'

(2.20)

subject to Y = Ynew(Z') = L\/L?

7'< 7

\

Let)(Z') =h (L\/7 Lt ) and compute the derivative:

NG
d N L v 1S
7' = 57 (1— ~ ) 2.21)

Following the same logic as in Case 1, we find:

dz'" o7

W, & (1 N 7_15> (2.22)

and the optimal target price is:

A it Z <718
Zopt = (223)

IS ifZ>471S
Combining both cases, we obtain the desired result. ]

Remark 2.2.2.

(1) The values v~1Z in the no-arbitrage condition represent the infinitesimal buying price:

dr =" (pr(y — dy) —L(y)) = =7 '¢LW)dy + O ((dy)*) ~ v Zdy  (2.24)

Same for the infinitesimal selling price that equals to vZ. The optimal pool price ensures
that these trading prices match the market price.

(2) If v = 1 (no fees), the optimal price is simply Z,,; = S, and the pool price instantly

11
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Figure 2.3: Arbitrage and Price Adjustment in Uniswap V2. The red dots indicate reserve pairs
corresponding to different pool prices. If the pool price falls outside the no-arbitrage region
[vS,~v~1S], arbitrageurs will act to push the price back to the boundary points .S or y~15,
which are tangent to the reserves curve and represent the limits of profitable arbitrage.

matches the market price after any update. In this case, arbitrageurs essentially minimize

the pool’s mark-to-market wealth X + Y - S.

(3) For~ # 1, arbitrageurs still minimize the mark-to-market value, but with effective market

prices of v*1S due to fees.”H

2.2.2 Price Process

We now construct the pool price model based on arbitrage. We assume that the logarithm of
the market price process, {In S, },>o, follows a simple random walk with forward probability
p > 0and step size 6 > 0 on some probability space ({2, F,P). Given this market price process,
arbitrage pushes the pool price to the target value whenever it falls outside the no-arbitrage
region ,as defined in Equation (2.16). This leads to the following definition of the pool price

Process:

Definition 2.2.3. We define

12



« the pool price process {7, },,>¢ as

anl lf’.)/Sn S anl S 7_18n
Zn=9~S,  if Zy_1 <S, (2.25)

1S, ifZ,_1 >~71S,

\
with initial condition Z, = S,. Here, 1 4 is the indicator function, equal to 1 if event A
occurs and 0 otherwise.

« the price deviation process {1, },>0 as M,, =In S, — In Z,

Since Z,, € [ySn, 7 1S,], we have M,, € [Inv,Iny~!]. To further simplify, we fix k € N
and set the random walk step size to 6 = —klIn~. This restricts the state space of M, to

{=kd, (—k+1)d,...,(k—1)d,kd}, allowing us to show that { M, },,>¢ forms a Markov chain.

1620
— pool

CEX
ITRSVA V A —— CEX upper
1615 4 JT AT : J e | —— CEX lower

1610 / | X Y k
| 1 A A ™M
A \ 7/ A A MU -
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1605 -
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1600 1 |

1595 4
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Figure 2.4: Pool vs. Market Price Trajectories. This graph shows the pool price (arbitrum
WETH/USDC 0.3% pool) and market price (Binance ETH) from September 13, 2023, 2 PM to
6 PM. The pool price is bounded by the *CEX upper’ v~1S and *CEX lower’ +.S lines and is
pushed towards them when touched, illustrating the arbitrage mechanism.

Proposition 2.2.4. The process { M, },>o is a Markov chain with an initial state My = 0 and

the following transition probabilities:

13



Form # +k

P ifm =m+1
P(Mu 1 =m'0 | M, =md) = (2.26)

1l—p ifm=m-—1

Form = £k
(
p ifm' =k
P(Mu1 =m'd | M, = ké) = (2.27)
l—p ifm=k—-1
)
1—p ifm' =—k
P(M,s: =m's | M, = —kd) = (2.28)
P ifm =—k+1

Equivalently, this can be described by the transition matrix

-k —k+1l -k+2, -0 k=2 k-1 k

—k 1—p D 0 0 0 0

—k+1]11—p 0 p 0 0 0
—k+2 0 l=p 0 0 0 0

(2.29)

k—2 0 0 0 0 P 0
k—1 0 0 0 - 1—p 0 P
k 0 0 0 0 1—p p

Proof. Given n € N, from (2.25) it is easy to see that the step size of M, is at most 6. We
consider following cases:

Case 1. M,, = md € (—kd, ko) (Deviation within bounds) . In this case, we have

InS, .1 —InZ,=M,+ (InS,;1 —InS,)) =md+ (InS, 1 —InS,)

Since the random walk step size is 6, this implies k6 < In 5,1 —In Z,, < k. Rearranging, we

14



get Z, € [vSni1,7 'Sns1). Therefore, by Equation (2.25), we have Z,, ., = Z,. This allows

us to compute:

P(Mys1 = (m + 1)6, My, = md) = P(In Sy — In Znsy = (m + 1)8,In.S,, — In Z, = md)
=P(InSyy1 —InZ, = (m+1)4,InS, —InZ, =md)
=P(InS,1 — InS, = 4§, M,, =mo)

= p-P(M, = md)

where the last equality follows from the independence of random walk steps. Rearranging, we
get:
P(M, 1 = (m +1)8 | M, = mé) =p (2.30)

Similarly, we can show that P (M, = (m =1)0-| M, =md) =1—p.
Case 2. M,, = k6 (Upper boundary). If M, = kd,thenIn S, —InZ,, > (k—1)d. From

Equation (2.25), this implies Z,, 17 > Z,,. We claim that:

(M1 = k6, My, = k6} = {n S,i1 =10 S, + 6, M, = k) (2.31)

« LHS C RHS: If the price deviation-does not change and In Z,,,; > In Z,,, the market

price must have increased, i.e., In S, ;1 = InS,, + .

*« RHS C LHS: IfIn S,,;1 = InS,,+d and M,, = kd, thenIn S, ;1 —InZ,, = (k+1)0 > ko.
By Equation (2.25), this implies In Z,,;; = Iny.S,,11 = InS,,11 — kd, and thus M, =
kd.

Therefore, the claim holds. Using the same reasoning as in Case 1, we find:

P(My1 = k6 | My = ké) =p (2.32)

And since M,, ;1 < kd, we also have:

P(My1=(k—1)5| My =k8) =1—P(Myyy =kS | M, =ké) =1—p (2.33)

15



Case 3. M,, = —ko (Lower boundary). The argument is similar to Case 2, yielding the

remaining transition probabilities. []

Remark 2.2.5.
The Markov chain {M,},>o behaves like a simple random walk when it is away from the
boundaries +k¢J. However, it is “’sticky” at the boundaries, remaining there if it tries to cross

them. This can be visualized the following diagram:

Since In Z,, = In S, — In M,,, the increment of the logarithm of the pool price is also . We

can further characterize the pool price process as follows:

Proposition 2.2.6. Forn > 0, define

n—1 n—1
Un = Z LRI e Dy= Z LM =—ks , Mp=—ks} (2.34)
i=0 1=0
Then we have
InZ, =InSy+ (U, — D,)d (2.35)

Proof. 1t is sufficient to show that the following two statements hold:

{InZypy1 = InZ, + 6} = {Mysy = k6, M, = kd} (2.36)

{InZpsy =InZ, — 6} = { M.y = —kS, M,, = —kd} (2.37)

i.e. the pool price moves if and only if the price deviation process remains at the boundaries.
We will focus on proving Equation (2.36).

(=) Assume M, 11 = kd and M,, = ké. Using Equation (2.31), we get:

InZ,.1—InZ,=InS, ;1 —InS,, — (Myy1 — M,) =90

16



This implies In Z,, < Inv.S,, ;. From the definition of the pool price process, Equation (2.25),
wehaveInZ,,y =InZ, + 9.

(<) Assume In Z,, .1 = In Z,, + 0. From Equation (2.25), this can only happen ifn Z,,,; =
In.S,,11, as the other cases would contradict the fact thatIn Z,, .y > In Z,,. This implies In Z,, =
InS, .1 — (k + 1)¢ and therefore M,,.; = kd. Now, suppose for contradiction that M,, < ké.
Then,

InS, ;1 —InS,=InS, ;1 —InZ, — M, >0

which contradicts the assumption that the random walk has step size §. Therefore, we must have
M, = kd. This completes the proof of Equation (2.36). The proof of Equation (2.37) follows

a similar logic. L

2.3 LP reward problem

Now we are interested in the growth'rate of a LP’s wealth plus the fee . A typical benchmark is
depositing the numéraire to the bank earn the compound-interest. If the growth rate is too slow,
LP’s position may be outperformed by the risk free rate, whose value grows exponentially fast
due to the compound interest. So this section we focus on computing the asymptotic expected
growth rate of the logarithm of LP’s return (fee plus wealth).

Let (X,,Y,) be the LP’s position in the pool at time n. We follow the argument in [5],
where the author assumes that LP reinvest the fee back to the pool . Other than that, he does
not withdraw or deposit liquidity after the initial deposition. The trading rule becomes the
following:

X, Yo = XY, ifarbitrageur buys Y from the pool
(2.38)

Xn1Y,) 1 = X,Y,) ifarbitrageur sells Y to the pool

Then the fee are incorporated into the wealth of LP. It is shown that under the new trading rule,
the pool price model still holds. Let W,, = X, +Y,, - S,, denote the wealth of LP at time n. The

result is the following :

17



Proposition 2.3.1.

(6 1—9y : 1
2147 7 r=s
E [In W,

fim 0 Wa] _ (2.39)

n—o0 n
(2p =131 —qp**t 1
(T 11y 1 zfp7é§

wherepzlip.

Before proving the proposition, we first show that { M, },,>¢ admits a stationary distribution,

which will help us to study the limiting behavior.

Proposition 2.3.2. The stationary distribution 7 : {—kd,--- | kd} — R* of the price deviation

process { M, },>o is given by the followings:
(1) Ifp =1, then m(md) = ﬁ Sforall =k <. m < k.
(2) If p # 5, then m(md) = p_(m’Lk)‘sp_l{—k”_p Sforall =k <‘m < k.

Proof. Clearly, the Markov Chain is recurrent and irreducible, so the stationary distribution
uniquely exists. For p = %, the transition matrix is doubly stochastic. Hence the Markov chain
has a uniform stationary distribution 7. Forp %, We just need to consider the linear equation
7™M = 7 where m = (w(—k0),..., (k&))" and M is the transition matrix given by (2.29).

Solving this we can get
m(nd) = p~ " Mr(kd)  Vne {—kd,... ké}

and normalization condition gives the result. U

Now we can prove Proposition 2.3.1:

18



Proof. For any n > 0, the logarithm of LP’s mark-to-market wealth at time n can be written as

InW, = In(X,, + S,Y,)

X, Y,
=In(X, + Z,Y,) + In <LS”">

1S,
=In(X,)+In2+1In (5 + 22n>

Note that since |M,,| = |In g_n

< k, the last term in the last equality is actually bounded:

Sn
27,

1
)gln(§v S )+In2=0V M,

1
1 _
n(; + 27,

Hence it suffices to study the growth rate of the logarithm amount of X asset in LP’s position.

Under the arbitrage assumption and , we can rewrite (2.38) as

(

XD\ Yo = X0V, on {M, 1 = M, = ké}

1 XY = X, V7 on{ M, = M, = —k&} (2.41)

(X1, Yora) = (X5, Y,) otherwise
\

Furthermore, from equations (2.36) and (2.37), we know how the pool price changes in the

above cases, and therefore how the reserves change. Substituting Y, = )Z(—: into the above,
simple calculation gives us
(
e™  on {M, 1 = M, = ké}
X;—:l ={e T on {M,1 = M, =—kd} (2.42)
1 otherwise

Now, for n > 0, we can express X, in terms of {U,, },,>0 and {D,, },,>0:

In X In X, D
nAn _ M 0+%L__”7_5 (2.43)

X, = eﬁUn*%D"XO =
n n 14~ n 147

By the ergodicity of { M,, },,>0, the limit of the above exists P a.s. (the state space is finite) and
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can be explicitly computed

.Uy
lim — = Ew [1{M1=M02k5}}

n—oo M
= 7(k6)P(My = ké | My = ko)
4
1 1
ifp=2= 2.44
Ak + 2 Hr=5 (249
= P-a.s
1—0p ) 1
—2k f -
=T if p# 5
. D,
nlglgo 7 =E, [ﬂ{MleO:—ké}]
(1
ifp=1% 2.45
1k +2 HP=a (2.43)
= Pa.s
1 =p .
[ if 1
\( p) e P#5
And the desired limit writes :
(1 h) L A9 .
NN ifp==
Ak + 214y Ak A21+7~y
. InW, In X,
hm = m —
n—oo n n—oo n
1—p 6 1—p o 1
—2k —(1 = -
Rt ( p)p_%_pH7 P# 5
(01—~ . 1
-7 ifp=-
4k + 21+~ 2
— P-a.s
m—1 1 — 2k+1 1
(2p—1)01—np ity L
\ 1+~ 1 — p2kz+1 2
(2.46)

Since |In X,,| < |In X,| 4+ nd, by Lebesgue dominant theorem, we also have the convergence

of the expected value.

Remark 2.3.3. The limiting growth rate is positive if p > %

20
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Forp < %, we can see that the



limiting growth rate is nonegative if and only if

1

1_,)/p2k—|—120:>pz1—|——_2’€#+1
~

Still, whether the growth rate is greater than the interest rate or not depends on the choice of
parameters. In 3.3.2 we will choose these parameters based on the empirical data and review

the results derived here. B
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Chapter 3

Uniswap V3

In this section we introduce Uniswap V3, a more general model of Uniswap, which offers greater
flexibility to LPs in their position. Similar to Chapter 2, We start from mechanism, construct
price dynamics and then study LP’s reward problem. Unlike in Uniswap V2, Uniswap V3
presents a more complex scenario-dueto-its concentrated liquidity feature. So we will consider

the stopping time problem for LP’s reward.

3.1 Uniswap V3 mechanism

Uniswap V3 has more abstract pool structure compared to Uniswap V2. In this updated version,

liquidity is not a constant but a step function of the pool price called liquidity profile:

L(z) = Z Lil;(z), Vz>0,
i€
where I; = [P;, P;11), is called a tick interval and P, is called a tick. The union of tick intervals

covers the whole the price range :

(0,00) = JIi

i€Z
We assume that the liquidity is nonzero inside [P;, P;) for some ¢ < j and is zero outside, which
implies that the pool reserves curve is piecewise and Locally it looks the same as a reserves

curve in Uniswap V2 but is truncated. Therefore, the model can be viewed as the patchwork of
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Uniswap V2. Figure 3.1 and Figure 3.2 show an example of Uniswap V3.

The motivation of Uniswap V3 is to increase the capital efficiency and reduce slippage. In
Uniswap V2, the liquidity is uniform on the whole price range, but in practice, only some small
parts of liquidity are used because the pool price typically fluctuates within a limited range. On
the contrary, in Uniswap V3, LPs can freely determine the tick intervals to provide liquidity
instead of the whole price range, but only when the pool price is in their price ranges can they
earn the trading fee . This encourages them to concentrate their liquidity in narrower price
ranges where they anticipate the pool price would be. By doing so, they can earn more fee but
with less initial assets to deposit. For traders, higher liquidity in the price range around the pool

price can also reduce the slippage. We will give more detail argument in the later part.

liquidity distribution

10

liquidity

D -
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
pool price

Figure 3.1: The graph gives an example of liquidity profile where the liquidity is concentrated
in the range [0.1, 2.1] and is zero outside.

3.1.1 Pool reserve curve and price

The pool reserves curve in Uniswap V3 can be considered as connecting multiple truncated
Uniswap V2 reserves curves together. So we first define these small patches on all tick intervals

and connect them together. Each tick interval /; is just like a small pool that has its own reserves
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2.0 1

1.5 A

1.0 A

amount of asset X

0.5 A

0.0 4

T T
0.0 0.5 1.0 15 2.0 2.5 3.0 3.5
amount of asset Y

Figure 3.2: The pool reserves curve corresponding to Figure 3.1. Each red dot on the graph
indicates a pool reserves pair that corresponds to some tick price. Equivalently, the absolute
value of the slope of tangent line at the red dot is equal to some tick price. The curves between
the adjacent red dots are actually truncated Uniswap V2 reserves curves but with different lig-
uidity.

but with finite capacities 7 and y; for.asset X and Y. In Figure 3.2, these two quantities

correspond to the difference of pool reserves between two adjacent red dots.

Definition 3.1.1. In Uniswap V3, the reserves curve on a tick interval I, = [P;, P,;;) with

liquidity L; > 0 is defined by

Ls(f;, Li) = {(l’uyz‘) € [0,27] x [0, 4] | (fﬂz +Li\/ﬁ> : (% + \/]L3:—+1> = Lf} 3.1

* * 1 1 1
where 2} = L; (/P — VFi) andyf = L; (V_PT — \/m) We can also express the relation

between the reserves pair (x;, y;) of the tick I; as some explicit function:

L2
r; = ¢r,1, (Vi) = +—’Lz — L/ P, (3.2)
Yi \V Pit1

for y; € [0, y7].
To connect the tick reserves curves together, we can parameterize them using a common
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parameter Z > 0:

(

(0,9;) ifZ < P,

(@202) = 3 (LVZ- VAL L(G - )] itZEPPa) 6

(27,0) if Z > P
\

for all « € Z. Then we see the relation between the parameter Z and the exchange rate of assets
on each I;:
~ #i(Z2) + LivP
vi(Z) + —

= 1. (ul2)) € [P P

(3.4)

The pool reserves pair are actually the sum of reserves on each tick interval:

(o 2hi@) = (S o)) = (S VAL 1 - )

icZ €7 e icZ Pit1

(3.5)

This is because whenever the parameter Z. € [}, we can write:

(@p, yp) (Zm +ax(Z) Zy:"‘yk(Z)) (3.6)

i<k i>k

which means locally the pool reserves change according to the rule we see in Uniswap V2.
And the pool price, absolute value of slope of pool reserve curve’s tangent line, is actually the

parameter Z. W

Remark 3.1.2. We can express z; and y; in the integral forms:

Z; L
~L(VE-VP) = [ L= (3.7)

b= Lil— — ——) = /Z T L)t (3.8)
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where Z; = (Z V P;) A\ P;;1. Therefore the pool reserves pair can be expressed as:

(xp7yp) = <Z o Z%)

i€l i€z
Z1 _1 *1 _3
= —L(z)z"2dz —L(z)z"2dz
0 2 z 2

L(z)2"% as the densities of assets X and Y. B

(3.9)

: 1
One can view 1 L(z)z" 2, &

3.1.2 Trading Mechanism

The basic idea of trading mechanism in V3 is the same as in Uniswap V2: change of the pool
reserves needs to follow the pool reserves curve. The key difference is that now the pool reserves
curve is piecewise.

Suppose that a trader wants to buy Ay > 0 amount of asset Y with the current pool price
Z. And the current pool reserves of asset Y_is y,(Z). Then buying asset Y push pool price Z

to the new pool price Z that is given by:

Z = inf{s > Z [yp(Z) = yp(s) = Dy A yp(2)} (3.10)

and the pool reserves pair moves to the corresponding point (xp(Z ) yp(Z )) on the curve. The

amount of asset X the trader needs to pay is 7~ <xp(Z ) —xp(Z )) , due to the existence of fee,
and receives y,(Z) — ,(Z) amount of asset Y. Note that if Ay > 1,(Z), he can only receive
Yp(Z) amount of asset Y since this is all amount of assets Y in the pool. And the pool price
is pushed to the rightmost tick that has nonzero liquidity. In practice, this scenario is unlikely
since the pool price only fluctuates around the reference market price due to the arbitrage and
the support of the liquidity profile is usually large enough to cover this range.

Similarly, if the trader sells Ay amount of asset Y with the current pool price Z. Selling

pushes the price to the new pool price Z given by:

Z =sup{s < Z | zyp(s) = yp(Z) = (vVAy) AN (y" — yp(2))} (3.11)
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¥ — 1 [

=5/ L(z)z_%dz is the maximum pool capacity of asset Y.

where y

3.1.3 Liquidity provision and Trading fee

In Uniswap V3, LPs can freely choose the tick intervals and the amounts of liquidity they want
to provide within those intervals, effectively building their own liquidity profile. And the pool
liquidity profile is just the sum of all LPs’ individual profiles.

Let Ly p(-) be a LP’s liquidity profile and Z be the current pool price, the LP position can

be expressed as

(210 2) yp(2)) = ( / L Let0)0-tas I %LLP(Q)Q_SCZQ) (3.12)

Z

An property of LP’s position is additivity, which results from the linearity of the integration.
This means the LP’s position can be viewed as the sum of position on each tick interval, or the

sum of positions on the same price range.

L L L
| B 5l B
P, P, Z P, P.Z P, P Z

L L L

+ —
o | . i
r, PZzZ P, P Z P P Z

Uniswap V3 maintains the same principle as Uniswap V2 that trading fees are distributed
to LPs based on their contribution to the pool. But now the contribution varies with price since
it is evaluated by the portion of liquidity provide by LP.

Whenever a trade buys asset Y such that price moves from Z to Z, the trader pays

1 — ~ 1 A4 1 _ ,,)/ 1
. (xp(Z) . xp(2)> - 5/Z L) s

amount of asset X as fee. The corresponding amount earned by the LP, denoted by some func-
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tion fx, is given by

1 (PP —y Lip(0) ) 1 (221 )
4,7) == S - L(60)0"2d0 = - Lpp(0)02d0 d
wzz=y [ et =5 [ neerie @)

Similarly, we use some function Y to denote the trading fee that is paid in asset Y to the LP

given by:

~ 1 z 1-— "}/ 3
fY(Za Z) = _/ LLP(H)G 2d6 (3.14)
2 )02 Y

Note that if the LP does not provide the liquidity in the price range between Z and Z, then he

has no contribution to the trade and the integrals vanish, i.e he can not earn any fee.

3.1.4 Advantage of Uniswap V3

As we mentioned earlier, Uniswap V3 can increase the capital efficiency. For example, suppose
the pool price only fluctuates in some price.range [ F;, P;]-and there are two LPs A and B. The
LP A deposits one unit of liquidity equally on (0, 00),.s0 the amounts of assets he needs to
deposit is

(a(Z) Al 2Y) = (ﬁ %) (3.15)

where Z is the initial pool price. On the other hand, the LP B decides to deposit one liquidity

unit of liquidity uniformly on [P;, P;] and the amounts of assets he needs to deposit is

Z P 3
(v5(2), y5(2)) = (% [ otao | e—zde) (3.16)
P;

Z

We can see that A needs to deposit more asset X and asset Y than B does, but they receive
the same amount of fee when the pool price remains in the region [F;, P;], which suggest that
concentrated liquidity profile is more capital efficient than uniform liquidity profile. Even if
the pool price goes outside of the region, LPs can always adjust their liquidity profile to cover

the new pool price.
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3.2 Price Dynamics Under Arbitrage Opportunities

In this section, we will construct price dynamics for Uniswap V3, under the same arbitrage’s
assumption in Section 2.2. We will show that the result is same as in Uniswap V2 because
whether the arbitrageur can earn the positive profit depends on the price, not the liquidity.

Let Z, S be the current pool and market price that are away from the leftmost and rightmost

ticks of the price range having nonzero liquidity, we have

Proposition 3.2.1. The optimal pool price for the arbitrageur is:

(

IS ifZ >~7tS
Zopt =\ Z if Z € [yS,7 9] (3.17)

~vS if Z <~S

\

Proof. If S > Z, the arbitrageur determines a target pool price Z & [Z,00). He then buys
Ay = y,(Z) — y,(Z) amount of asset Y from the pool and pays Az = v~ (:z:p(Z), xp(Z)>.

So the optimization problem for profit can be formulated as

sup (yp(Z) — yp(Z)> S5 4t (xp(Z),xp(Z)>

Ze[Z,oo)
1 z _3 _1p—41
= sup L(6)[SO"2 —~ 6" 2]db (3.18)
Ze(Z,00) “

1 [Z .
~ s L / LO)0-3[S6" — ~1]do

Z€|Z,00) 2 4

Note that the integrand is positive if and only if § < vS. If Z > ~.5, the integrand will never be
positive, the only choice is Z,,; = Z, i.e the arbitrageur does nothing. If Z < +.5, then clearly

the optimal choice is Z,, = 7.S.
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Similarly, if S < Z, the optimization problem for profit is:

sy (9(2) = ul(2)) - S+ (w4(2) = 1,(2)) (3.19)
Ze0,z
Z
— sup + / L(0)[672 — Sy '07%]db (3.20)
Z¢e[0,2] Z
Z
i -1 -1
= 2 L) 2]y — S671)do 3.21
zzl[fzﬂ/z (0)0~=2[y ] (3.21)

which suggests that if Z < 47'S , then the optimal choice is Z,, = Z. If not, we have

Zopt =y~ 1S. Combining the results we prove the statement. [

Now we can consider the same construction of price dynamic as Section 2.2, where we
define {5, },>0 to be a geometric random walk with step size 6 = —=2 for some k& € N and

the price deviation process M,, = In S,, — In Z,,.

3.3 LP return problem

In the following discussion we focus on a simplified case thata LP only provide some constant
liquidity L > 0 on some fixed price range [P,, P,) = Uf;i [P;, P;+1) that includes the initial
pool price Zy. Also, whenever the LP earns the trading fee, he deposits them into the bank to
accumulate interest. We want to analyze the reward of the LP compared with depositing the
initial wealth to the bank.

Based on Equation (3.12), his position can be expressed as

(3.22)

<pr<Z>,yLP<Z>>=(L<¢ZAPb VE) L f>)

From the no-arbitrage condition that Z, < v~ 1S,, we can see that LP’s wealth is actually

bounded:

W, = x1p(Zy) +yrp(Zy) - Sy < L(VPy— VB +~ P, - L \/_ \/1_) W* (3.23)

Additionally, when the pool price leaves [P,, B,], his position will be ”locked” in the relative
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less valuable asset. For the fee part, if p # %, the SRW {In S,, },,>¢ is transient, which means
that eventually LP can not earn fee. For p = %, the SRW is null recurrent. Then let

N-1

FN = Z fX(Zm Zn+1) + Sn-i-lfY(Zna Zn-i—l)

n=0

be the cumulative fee up to time N and

fmax EmaX{fX(PaaPb)afyilpbfY<Pa7Pb)} (324)

which serves as an upper bound for the amount of fee earned for each price change. Then the

asymptotic growth rate of the cumulative fee can be estimated by

F 1 N-1
lim supWN N > Lizeetpary =0 (3.25)

—00
N—oo n—0

since SRW is null recurrent. So the asymptotic growth rate is sublinear, which suggests that in
the long run, the reward may be outperformed by our bench mark. This motivates us to consider
the optimal stopping problem where and L.Pwill choose an optimal timing to withdraw all his
liquidity.

Unlike the case in section 2.3, to compute the exact wealth and the fee at each moment, only
the price deviation is not enough. We also need the information of the pool price. Therefore,
we consider the process of the pairs {(Z,,, M,,) },,>0, which is a Markov chain with transition

probability:

P if mo=kd, 2z = z€’

p((Z07m0)7 (Zlum())) = 1 —p if moy = —ké , B1 = 20_6

0 else
) (3.26)

P if mgy € (—kd, kd), my =mo+96
p((207m0)7 (207m1)) =431 —p if mg € (—ké, k(;) , M1 = Moy — 0

0 else

31



-
-~

1-p

In Z (Logarithm of Pool Price)
o
g
-~

—4

T T T T T
-4 -2 0 2 4
M (Price Deviation)

Figure 3.3: An example of the state space of {({nZ,,, M,,)},>0 with k& = 5. The red arrow
indicates the possible movement of the process at each state.. We can see that the pool price can
move to the next layer only when it is at the M = +k.

For simplicity, we further assume that ticks are given by P, ;i = ¢’ F;. The state space of this

Markov chain is visualized in Figure 3.3.

3.3.1 Optimal stopping problem

First we write down the optimal value function, which is the optimal expected discounted reward

of LP. Given pool price Z and price deviation M, we use denote the wealth part of LP by:

1 1
VZANP, /P,

W(Z,M)=L(\ZV P, —\/P,)+ ZeML( ) (3.27)

Then the value function writes:

7—1
V(Z,M) = sug E(z ) {GTTW(ZT7 M) + Z e~ (FHr [fX(le Zs1) + Zpree 1 fy (2, Zk+1)}
TE k=0
(3.28)
where A is the collection of all admissible stopping times for the filtration {F,,},>o and we

use the convention that Z;:lo 1s zero so that Z;;é in the right hand side of the equation is
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well-defined. Note that even if 7 = oo, the terms inside the expectation at the right hand side
is well- defined due to the discount factor.

We aim to show that the value function V' satisfies some recursion relation called Bellman
equation(we will not solve it in this thesis).

Denote the expected fee earned at the next time step as follows:

C(Z, M) = €7TE(Z’]V[) [fX(ZU, Z1> + Zlejvhfy(Zo, Zl)}

Our first step is to use the function ¢ and the lemma below to rewrite the fee part in value

function.

Lemma 3.3.1. For 7 € A, we have:

T—1 .
re [Z e £x (Zks Zir) + B €55 (Zis Zi) | = Bz [Z e M e(Zy, Mk)]
k=0 e
(3.29)
Proof.
ZM [Z e Zk, Mk: ]
SR [ St
n>1
=2 ZE zony (e TV B gm0 (fx (Zo, Z0) + Z0e™ fy (Zo, Z4)); 7 = n]
- (3.30)
:Z ZE(ZM) [6—(k+1)TE(Z,M)(fX(ZO, 7)) + Z:eM fy (2, Z)) | Fi);T = n]
k>0 n>k
:ZE(Z’M) {e BB g any [fx(Zhs Zia) + Zue™ 2 fy (Zhs Ziya) Uiy | Fi]
k>0
T—1
:E(Z,M) Ze_(k+1)TfX(Zk, Zk+1) + Zk+1€Mk+1fY(Zk;7 Zk+1)
k=0

where in the third line we change the order of sum and the fourth line use the Markov property.

]

Next, we want to apply a fundamental theorem for optimal stopping theory from [6], which
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states that if the reward function satisfies some conditions, we can derive the Bellman equation

for optimal stopping problem.

Theorem 3.3.2. Let { A, },>0 be a Markov chain with state space E, A be the collection of

stopping time for the filtration generated by { A, } >0 . Given a measurable function G : E — R

satisfying:
1. E, [supyc,<y|G(4,)]] <oo VN >0
2. lim,, o, G(A,,) exists Py a.s. VN > 0

Then the optimal value function of the optimal stopping problem: V (s) = sup_. ;1 E; [G(A-)]

satisfies the Bellman equation:
V(s) = G(5) VB,V (Ay)] (3.31)

Furthermore, let 7 = inf{n > 0 |'V(A,) = G(Ay)}. If 75 < 0o Py — a.s. forall s € E.

Then it is the optimal stopping time.

In our case, the reward function depends on time(through discounted factors) and the path(through
the fee part). To apply Theorem 3.3.3, we need to make some modification. The idea of mod-
ification also follows the discussion in [6], we creates a new process to absorb the time and
path dependent parts and the corresponding optimal value function is the same as the one in
our problem and we apply Theorem 3.3.2 to the optimal stopping problem based on this new

process.

Theorem 3.3.3. The optimal value function V' satisfies the following equation:
V(Z,M)=W(Z,M)V e " {Ezm |[V(Zi, Mi)|} + c(Z, M) (3.32)

Also, " = inf{n > 0 | V(Z,, M,,) = W(Z,, M,,)} is the optimal stopping time, i.e.

T -1

V(Z, M) = Ezm) {eT*TW(ZTMMr*) + > e ST (Zn, Zia) + Skirfy (Zks Zig)
k=0
(3.33)
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Proof. The whole proof is separated into four steps. In first three steps we incorporate the
discount factor and cumulative fee into the process. In the last step we apply the theorem to the

modified process and derive the result for our case.

step 1: Let A, = {(Zn, M) >0, S = R x {—k, ..., k} be the state space, {F, },>0 be the
filtration generated by {A, },>0 and {uy}x>; be i.i.d. Bernoulli random variables that
are independent of {F,,},>0 with P(u; = 1) =1 —e™" = P(u; = 0) = e ". Define a

new process A, : @ — S = S U {dead} by:

A, on (N {u; =0}

dead on J;_ {u; =1}

and we define A, = dead. Clearly, {fln}nzo is still a Markov chain. For sq, s; € S, the

transition probability is given by:

1 Sgy S1 = dead

0 So = dead # $1
25(307 81) RN
e_rp<807 Sl) S0, S1 7é dead

1—e™" s1 = dead # s

We extend the domain of T and c to S by letting W (dead) = c¢(dead) = 0. Now observe

that given integrable function F' : S — R such that F'(dead) = 0, for all s € S we have

B [FA)] = [ats.ds) [ [ plonrds) Pls)
/ e p(s, dsi) / / e p(sndsn) F(s,)  (3.34)

=E,[eF(A

Now we claim that E,(e "W (A,)) = E,(W(A,)) for any stopping time 7 € A and
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s € S. Givenn € N, we have

E, [e "W (A,); ﬂ{ul—O} W(A,); ™ =n]

=E;[W(A,);T=nu;=0 Vi=1...n] (3.35)

I
H

= S[W T—TLA #dead}
i

WAey7=n|

where in the first equation we use independence of {u;}, and {F,},>¢. Similarly, we

also have
T—1 k
E, e~ => Y P(( [{ui = 0})E, [c(Ay); 7 = n]
k=0 n>0 k<n i=1
=> M'E, [c(Ak); 7 =n, A, # dead (3.36)
n>0"k<n
7—1 -
= ES Z C(Ak)
k=0

Combine together and take supremum we get

7—1
V(s) = supEy [ W (A,) + Y c(Ay) (3.37)
TEA k—0

step 2: Let {]}n}nzo be the filtration generated by {An}nzo and A be the collection of all stop-
ping time for {]—N"n}nzo, we will show that the supremum above can be taken over all
stopping times in A instead of .A. Define 7, = inf{n > 0 | A, = dead}, which is
a stopping time for {F,},>0. Notice that if 7 € A, then 7 A 7, € A. This is be-
cause given n € N, there exists some F,,-measurable function g, : S — R such that
Lir<ny = gn(Ai1,..., Ay). Note that under {7, > n}, we A; = A, fori < n. So the
indicator function 1<,y {ry>n} = Gn (fil, o An)IL{TdM} is F,,- measurable. Therefore
we have

{T/\ngn}:({Tgn}ﬁ{7d>n})u{7'd:n}6.7:"”
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and furthermore,

7—1 TATg—1 7—1
E, |[W(A)+ > (A | =Ey |W(Apnr,) + (A | < supE, [W(A:) + > o
k=0 k=0 FeA k=0

since W (dead) = ¢(dead) = 0. Conversely, for each stopping time 7 € A, there exists
F,,-measurable function g, : S” — R foreachn > 0 such that Liz—pn) = gn(flo, e ,fln).
We define

n o on {g.(Ao,...,A,) =1}
oo on () {gn(Ao,..., A,) =0}

Clearly 7 is a stopping time of {F,,},>0. Notice that 7 A 7; = 7 A 7,4 since given any

we Qifr(w) =n < 74(w) for some n > 0, then

]1{7‘=n}(w) = gn(AO(W)v s 7An(w)> N\ gn(AO(w)v S ’An(w)) =1 (3.38)

so 7 A 74(w) = n. Since w-and n are-arbitrary, the equality holds on {7 < 7,}. Similarly,

if 7(w) > 74(w) = n for some n-> 0, then

L=y (W) = gk (Ao(w), T flk(w)) =g (Ag(w), ..., Ag(w)) =0 (3.39)

for k& < n, which implies 7(w) > n. So 7(w) A 74(w) = n and we can conclude that the

equality holds on €. So given s € S, we have

71 FATg—1
E, |W(A)+ Y c(Ap)| =By [W(Asnr,) + Y c(Ap)
k=0 L k=0 |
B TATg—1 T
= [, W(AT/\Td) + C(Ak)
i pard ] (3.40)
T'—1 T
< swp B, [W(A) + 3 e(Ay)
T'eA k—0 ]
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Therefore

V(s) = sup Eq
Fed

W(Az) + ) e(A)

k=0

(3.41)

step 3: Now we incorporate the cumulative fee part into the Markov process. Given I, € R and
I,=1,,+ C(An—l) for all n € N, we define another new Markov chain {(/In, jn)}nZO

with transition probability

1 Sp = s1 = dead

0 so = dead # s;
ﬁ ((807 I)? (817 I+ C(SO))) =

e "p(so,S1) So,S1 # dead

1—e™" s1 = dead # sg

\

for any sg,s; € S and I € R,. Define G+ S x RT — Rby G(s, 1) = W(s) + I and let

V(s,I) = sup E.1 [G(/L,I;)}, so we have V/(s), =V (s,0) = V(s,I) — I fors € S.
FeA

To apply the Theorem 3.3.2 on V/, it is required that for any (s, I) € S x R, the function

G satisfies:

1. Ep [supOSnSN(G(fln, fn)] =E.nlsupgs,cn W(A,) + fn)} <o VN >0.
2. lim,,_, G(/Nln, fn) = lim,,_, (W([ln) + fn> exists P(5 1)-a.s.
From the beginning of this section we see that wealth (3.23) and the amount of fee earned

at each time (3.24) are bounded:

Ewn| sup W(A,) + 1) <W*+I+Eqn[Iy] <W*+ 1+ Nfrpe < oo (3.42)

0<n<N

On the other hand, since 74 < oo P(, ) — a.s, the process will eventually be absorbed.

Hence
Td—l
W(A,) + I, = W(dead) + I, =1+ > c(A,) <oo Pup—as. (3.43)
n=0
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step 4:

The theorem gives us:

V(s, 1) = G(s, 1) VEq [V(A, T)| (3.44)
and the optimal stopping time for the modified problem is given by

7 =inf{n > 0| G(A,, I,) = V(A,, )} (3.45)

Note that since the dead state is an absorbing state and G(dead, ) = I = V(dead, I),
we can conclude 7* < 745 < oo IP(s py-a.s. In particular, when / = 0 and s # dead, we

get

Vi(s)=V(s,0)
= W(s) V. Eso, [V(Al, 1])] (3.46)

=X W(S) Ve " {E(570) [V(Al)]} + C(S)

we check (3.33). First we claim that 7* A7y = 7%, Ifw € {7* < 7.}, then A,-(w) =

A« (w). By the definition of 7%, we have

in other words, 7*(w) is the smallest time satisfying (3.45). So 7*(w) = 7*(w). Con-

versely, if w € {7* > 7}, we see that
W (AR)(w) # V(A (W) = G(Ar, 1) (w) # V (A, L) (w) (3.48)

for k < 74(w) and hence 7*(w) = 14(w).

39



Now for s # dead we have

B T*ATg—1
= By | W)+ Y oAy (3.49)
L k=0
i ~ T*—1 ~
Bl |W(A-) + Y (A
L k=0
T*—1
= E, eiT*TW(AT*) + Z € er<Ak)
k=0
So 7* is the optimal stopping time and we finish the proof.
[

Although we have derived the Bellman equation for-our problem, directly solving it is chal-
lenging due to the infinite horizon and the absence of clear boundary conditions. Therefore,
we will not pursue a direct solution to this equation. Instead, we will explore some simplified

stopping time strategy in the next part.

3.3.2 Stop at boundary

In this subsection, we consider a simplified strategy where the stopping time is set to be the time
when the pool price reach some fixed price levels P, or P,. In this case, the value function, i.e

expected discounted reward, is given by:

T-1

V(Z,M) = E¢z {G_TTW(ZTy Mr) + Z e () ([x(Zp, Zyi1) + Zypr € fy (Ziny Zngr)]
n=0
(3.50)
for (Z,M) € {P,..., P} x {=kd,...,ké} U{(P, —kd), (P,, kd)} and the stopping time

T=inf{n>0|2%,=PForP,}=inf{n>0|(Z,, M,) = (P, kd) or (P,,—kd)}
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Our goal is to compute the value function directly and produce some numerical results which
may indicate us the optimal choice of P, and P,. We first prove a lemma which is crucial for

the computation.

Lemma 3.34. Let 7 = inf{k > 0| Z,, # Zy}. For (Z,M) € (P, P,) x {—ké,...,kd}, we
have

V(Z,M) =Bz (e Z = Ze°| [V(Ze°, k8) + fx(Z, Ze%)] .51
3.51

+Ezan [e7 2, = Ze7°| [V(Ze™, ko) + fx(Z,Ze™)]

Proof. First notice that " > 7 [P(z ) — a.s. because for the process to reach the boundary

points, the pool price must change. Then we can rewrite (3.50):

T—1
V(Z, M { e - n+1) fX Zn, Zn+1) 4 Zn+1€ n+1fy(Zn’ Zn+1)i| }
n=0
T-1
+ ]E(Z,M) {eTTW(ZTa MT) Z e~r(n+1) [fX(Zna Zn+1) + Zn+1€]\/[n+1fY(Zna Zn+1)} }

(3.52)
For n < 7 part, since the pool price does not change until time 7, the LP can not earn fee. So
the terms in the sum vanish except n'= 7= 1. For7 < n < T', we introduce the shift operator
on the canonical probability space as 0, : SZ+ ' S%+. So for any w = (sg, 51, ...) € S&+, we
have

(97.(&)> = (ST(LU)7 Sr(w)+1y - - ) and To 97’(("‘)) = T(UJ) - T(w> (353)

and using the shift operator, we can rewrite the sum:

T(w)—1
S eI 3 (Zny Zuia) (@) + Zgr (@)™ fy (Zy, Zoir) (w)]
n=1(w)
T(w) —7(w)—
= e Z &I [ (Zny Zug1)(0r(@)) + Zinir (0(0)) M1 O [y (2, 7, 1) (0 ()]

n=0

T-1
_ o) {Z e " [ fx(Zn, Znir) + Znir€™ fy (Z, Zni)] } 0 0-(w)
n=0
(3.54)
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Same for the wealth part:
T (Zp, My)(w) = e [e "W (Zy, My)] 0 0, (w)
Combine the results together we get

V<ZvM):E( { [fX( T—1» >+ZGMTfY< T— 1727’)}

T-1

+e T leTTW(ZT, My) Y e " [fx(Zns Zusa) + Znir €4 fy (Zn, Znsa)]

n=0

097}

=Ezum) { [fX( 1, Ze) + Ze My (Z, 0, Z,) +V(Z’7'7MT):|}
=Ezar (6775 2, = Zoe®) [V(Ze°, kd) + fx(Z, Ze%)]

+ Bz (€775 Zy = Zoe ) [V(Ze ™, —kd) + fx(Z, Ze ™))
(3.55)

where in the second equality we use the strong Markov property and in the last equality we just

separate the case that pool price goes up -or down. O

Clearly, for the two boundary points (£}, —kd)and(P,, kJ), the values are just the wealth

part:
B B - o 1 _ 1
V(Pu,k8) = W(Py k) = L(V (B A ) V P = v/Pa) + LP,e™( TP T VB
- B B _ B —ks 1 1
V (B, —kd) = W(P, —ké) = L(/(Py A i)V P, — \/P,) + LPe (m \/Fb)
(3.56)

For the others, the lemma suggests that we first can solve some recursion relation for the values
at the states (Z, £kd) for Z € {P,, ..., P,} and later compute the values at intermediate states.
More precisely, let B = {P,..., P,} x {—kd,ké} U {(P, —kd), (P,,kd)} and N € N such

that In P, — In P, = (N + 1)J, we enumerate the states in B by some bijective map:

(Pem, —kd) ifo<n<N
h(n) = (3.57)

(Pen~ WA B§) if N+1<n<2N+1

Then foreach0 < n < 2N +1, let (Z, M) = h(n). Figure 3.4 shows an example of enumerat-
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Figure 3.4: Enumerated states. An example of how i enumerates the boundary states. We
can see the whichever enumerated state we start at, the first time pool price moves, we will
reach another enumerated states. 'This implies that the value function on these states can be
independently solve by Equation (3.51)

ing these boundary states. It suggests that we can use Equation (3.51) to solve the value function
on these boundary states independently, without involving the intermediate state m # +ko.

With the enumeration, we define the notations below:

* W (n) corresponds to W (Z, M)

* Ay(n) corresponds to Bz ur) [¢777; Z; = Zoe’]
* Aq(n) corresponds to Ez ) [e7'7; Z; = Zoe ™)
* S(n) corresponds to Ze?

* fx(n) corresponds to fx(Ze’, Z)

* fy(n) corresponds to fy(Ze™?, Z)
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Substitute into (3.51), we derive the recursion relation for the value function on B:

W(n) ifn=00r2N +1

=3 A [Vin+N+1)+ fx(n)]+Asn) [V(n—1)+Sn—1)fy(n)] if0<n<N

Agn)[Vin+ 1)+ fx(n)] + Aa(n) [V(in = N)+S(n—N —1)fy(n)] if N+1<n<2N+1
(3.58)

\

We can also express recursion in linear system form. Use the notation 0 < n; < N and

N +1<ng < 2N + 1, we can write:

1 0 0 0 0
V(0) V(0)
n1—1th column n1+N+1th column
—
ng— N th column no+1 th column
\%4 V
V(2N + 1) 0 0 0 5 0 0 ] V(2N +1)
0

Au(ni) fx(n1) + Aa(na)S(na — 1) fy (1)

Au(n2) fx(n2) + Aa(n2)S(ny — N = 1) fy(na)

(3.59)
To compute A, and A;, we first consider a general case. let { B, },,>0 be a simple random walk
with forward probability p > 0 and unit step size. We want to compute E,(e="""; By = k+1)
and E,(e 7" ; By = —(k+ 1) with T = {n >0 | B, = k+ lor — (k+ 1)} and

r ¢ {—(k+1),(k+1)}. We can choose a > 0 such that {e*P» ="}, is a martingale with
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respect to filtration generated by { B, },,>0 and use the property of martingale to compute the

desired expected value. More precisely, given n > 0, we want the following equation holds:
E, (e =7 | B) = pet(PatD=0r 4 (1 pjealPat=sthr — coBumnr (3 )

By some computation we get two solutions:

+ 2r 4 1_
as = log (6 \/6 r p( p))

By the property of martingale, we get the linear equations for our desired expected values:

eaiz — Ez(e“iXO)

_ ]Ex(eaiBT/ —T’r)

(3.61)
=E, (=8 =T Bp = k+ 1)+ E (e%Fr =1 B = —k — 1)
= et (=T B =k + 1) 4 7BtV R (=T By = —k — 1)
Solve the equations and we derive
o ea+(:c+k+1) a—(z+k+1)
E, <€ ; Br =k + 1) . e2as (kD) _ €2a (k+1) (3.62)
L €a+(xfk 1) _ €0 (z—k—1) ’
E, (6 ; By = —k — 1) - e—2a4(k+1) _ p—2a—(k+1)

Now go back to our case, observe that {Z, = Zye*°} = {M,, = M,,,, = £kd}. And since
{M,, },>o behaves almost like a simple random walk except sticking at the states k¢ the event

on the right hand side can actually be characterized by { By» = +(k + 1)}. Therefore

0+ (M+k+1) _ e (M+k+1)

E(Z7M) (e—r’r; ZT - Z()eé) = E(ZJ\/[) (6_”—; MT—l = MT = k(S) =

o2a1 (k1) _ p2a_(k+1)

par (M—k=1) _ ga_(M—k-1)
E(Z,M) ( - Z - ZQ@ ) = ]E(Z,M) (e—r‘r; MT—l = MT - _kd) =

e—2a4(k+1) _ o—2a—(k+1)

(3.63)
Notice that if p = % and r = 0, we get a = 0 degenerate root but it is not a big problem

since { B, } >0 is a martingale and the desired value can be derived by solving the gambler ruin
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Figure 3.5: Normalized value functions with different interest rates. We use the parameters in
Table 3.1 and divide the value functions by the initial wealth at states.

problem:
—rT M+k+1
E(Z,M) (6 ; ZT £ Z()eé) 2 ]P)(Z,M)(MT =k + ]_) _ - =
2(k+1)
ke1oy o G0
Ezan (€771 Zr = Zoe™") = Pzan (M = —k — 1) = 2(k + 1)

Substitute the above results into (3.51) and solve linear system for the value function at the
states in 3. The values at intermediate states can be computed again by (3.51).

In the next parts, we present some numerical results to illustrate the value function and the
optimal choice of the stopping boundaries for a simplified case. The time scale is set to 10
minutes and we choose Binance as our reference market. For the choice of parameters, the
forward probability p and step size ¢ is chosen according to Binance ETH price 10 minutes
data. We let p to be the empirical probability that the price goes up and let 4 to be the mean of
absolute value of log price change |In S,, 1 —In S,,|. The corresponding k is [—3 In~y]. And for
simplicity, we choose the price range of the LP to be only the tick interval [P,, B,) = [1,¢?).
The exact values of these parameters are list in Table 3.1 and Figure 3.5 shows the an example

of value functions with different discounted rate , normalized by the initial wealth.
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k mP, mP, InF, InP, L vy 0 p
2 0 1 —10 10 1 0.997 0.0015 0.5

Table 3.1: Table of Parameters

1.00

0.98

- 0.96

-0.94

-0.92

0.90

0.88

D~
—

P~ @M~ 2] ~ @
TLEF NN O OOMMD0EDD
In_Pu

Figure 3.6: V/(0,0)/W(0,0) with different choice of In 7, and In P,. We can see there are
horizontal stripes with significantly deeper colors, indicating that the values are higher at some
specific choice of lower boundaries In'#; under the same choice of upper boundary In P,.

Next, we use the discounted rate 7 computed from 3% annual rate:
r=(1—-0.03)m528 /~1~56-107° (3.65)

and focus on the value at the starting point (In Zy, My) = (0,0). Figure 3.6 compares the nor-
malized value functions at (0, 0) with different stopping boundaries (In P, In P,). We can derive
the optimal choice of boundaries from (—100, 100). The value is greater than 1, suggesting that

the LP can have positive profit, see Table 3.2.

InP, InP, r value

—18 10 5.6-107% 1.001574840177328

Table 3.2: Table of discounted rate, optimal choice of stopping boundaries

We can also use the parameters in tables to compute the exact value of the asymptotic log-

47



arithm growth rate (2.39):

1 1—
lim W 0 7

— ~225-107" <r=56-10"°

which means that in Uniswap V2, LP’s reward is outperformed by bank deposit. While in
Uniswap V3 we see that suitable choice upper and lower price levels help LP’s reward to sur-
passes the bank deposit. So we can conclude that the generalization from V2 to V3 can indeed

increase the profit of LPs by providing them more flexible choices to design their strategies.

3.3.3 Discussion

In this work, we only consider the stopping time as a control and compute the value function for
stopping-at-boundary strategy. Though we did not solve the optimal stopping problem in section
3.3.1, the additivity property in Uniswap V3-simplifies consideration of a more general problem.
Suppose now LP withdraws liquidity on each tick interval independently, which means that
each tick interval is associated with an optimal stopping time. Since the decomposition of
LP’s position into smaller positions on tick intervals can also applies to wealth ,fee part and
therefore the value function, we can focus on the optimal stopping problem for a position with
unit liquidity on each tick interval only. ‘Sum of the optimal value functions of these smaller
positions gives the original optimal value function.

The results of the problem should provide some insight for more general control problem
such as allowing LP to dynamically adjusting their liquidity profiles, since reducing the liquidity
on a tick interval is actually equivalent to withdraw the position on that tick interval with the
same amount of liquidity. Also advanced techniques like dynamic programming/ reinforcement

learning can be employed to solve the problem more effectively.
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